精英家教网 > 初中数学 > 题目详情

已知:二次函数的表达式为y=2x2+4x-1.
(1)设这个函数图象的顶点坐标为P,与y轴的交点为A,求P、A两点的坐标;
(2)将二次函数的图象向上平移1个单位,设平移后的图象与x轴的交点为B、C(其中点B在点C的左侧),求B、C两点的坐标及tan∠APB的值.

解:(1)y=2x2+4x-1=2(x2+2x)-1=2(x+1)2-3,
∴顶点P的坐标为:P(-1,-3),
当x=0时,y=-1,
∴与y轴的交点坐标为:A(0,-1);

(2)平移后的解析式为:y=2x2+4x.
令y=0,得2x2+4x=0,
∴x1=0,x2=-2.
∴平移后的图象与x轴的交点坐标为:B(-2,0),C(0,0);
由A(0,-1),B(-2,0),P(-1,-3),
可得:AB=,AP=,PB=
∴AB2+AP2=PB2
∴∠PAB=90°.
∴tan∠APB==1.
分析:(1)利用配方法将原函数解析式变为y=2(x+1)2-3,则可求得这个函数图象的顶点坐标P,又由x=0时,y=-1,求得点A的坐标;
(2)首先求得平移后的二次函数的解析式,则可求得B、C的坐标,然后求得AB,AP,PB的长,则可得∠PAB=90°,则问题得解.
点评:此题考查了二次函数一般式与顶点式的转化,勾股定理的应用以及二次函数与一元二次方程的关系等知识.此题难度适中,解题的关键是方程思想与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•自贡)已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少
1
a
,纵坐标增大
1
a
分别作为点A的横、纵坐标;把顶点的横坐标增加
1
a
,纵坐标增加
1
a
分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上.
(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;
(2)请找出在直线l上但不是该抛物线顶点的所有点,并说明理由;
(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+c(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明.

查看答案和解析>>

科目:初中数学 来源:四川省自贡市2011年初中毕业生学业考试数学试卷 题型:044

已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少,纵坐标增大分别作为点A的横、纵坐标;把顶点的横坐标增加,纵坐标增加分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上.

(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;

(2)请找出在直线上但不是该抛物线顶点的所有点,并说明理由;

(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+x(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少数学公式,纵坐标增大数学公式分别作为点A的横、纵坐标;把顶点的横坐标增加数学公式,纵坐标增加数学公式分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上.
(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;
(2)请找出在直线l上但不是该抛物线顶点的所有点,并说明理由;
(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+c(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明.

查看答案和解析>>

科目:初中数学 来源:四川省中考真题 题型:解答题

已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少,纵坐标增大分别作为点A的横、纵坐标;把顶点的横坐标增加,纵坐标增加分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上。
(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;
(2)请找出在直线l上但不是该抛物线顶点的所有点,并说明理由;
(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+c(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明。

查看答案和解析>>

科目:初中数学 来源:2011年四川省自贡市中考数学试卷(解析版) 题型:解答题

已知抛物线y=ax2+2x+3(a≠0)有如下两个特点:①无论实数a怎样变化,其顶点都在某一条直线l上;②若把顶点的横坐标减少,纵坐标增大分别作为点A的横、纵坐标;把顶点的横坐标增加,纵坐标增加分别作为点B的横、纵坐标,则A,B两点也在抛物线y=ax2+2x+3(a≠0)上.
(1)求出当实数a变化时,抛物线y=ax2+2x+3(a≠0)的顶点所在直线l的解析式;
(2)请找出在直线l上但不是该抛物线顶点的所有点,并说明理由;
(3)你能根据特点②的启示,对一般二次函数y=ax2+bx+c(a≠0)提出一个猜想吗?请用数学语言把你的猜想表达出来,并给予证明.

查看答案和解析>>

同步练习册答案