【题目】如图,在平面直角坐标系xOy中,直线AB与抛物线y=ax2+bx交于点A(6,0)和点B(1,﹣5).
(1)求这条抛物线的表达式和直线AB的表达式;
(2)如果点C在直线AB上,且∠BOC的正切值是,求点C的坐标.
【答案】(1)y=x2﹣6x,y=x﹣6;(2)C(,﹣).
【解析】
(1)利用待定系数法求二次函数和一次函数的解析式;
(2)先说明OA=OH=6,则∠OAH=45°,作辅助线,根据正切值证明∠BOC=∠OBE,作OB的垂直平分线交AB于C,交OB于F,解法一:先根据中点坐标公式可得F(),易得直线OB的解析式为:y=﹣5x,根据两直线垂直的关系可得直线FC的解析式为:y,列方程x﹣6,解出可得C的坐标;
解法二:过C作CD⊥x轴于D,连接OC,设C(m,m﹣6),根据OC=BC,列方程可得结论.
(1)把点A(6,0)和点B(1,﹣5)代入抛物线y=ax2+bx得:
,解得:,∴这条抛物线的表达式:y=x2﹣6x,设直线AB的解析式为:y=kx+b,把点A(6,0)和点B(1,﹣5)代入得:,解得:,则直线AB的解析式为:y=x﹣6;
(2)当x=0时,y=6,当y=0时,x=6,∴OA=OH=6.
∵∠AOH=90°,∴∠OAH=45°,过B作BG⊥x轴于G,则△ABG是等腰直角三角形,∴AB=5,过O作OE⊥AB于E,S△AOHAHOEOAOH,6OE=6×6,OE=3,∴BE=AB﹣AE=5,Rt△BOE中,tan∠OBE.
∵∠BOC的正切值是,∴∠BOC=∠OBE,∴OC=CB.作OB的垂直平分线交AB于C,交OB于F,解法一:∵B(1,﹣5),∴F(),易得直线OB的解析式为:y=﹣5x,设直线FC的解析式为:yx+b,把F()代入得:b,b,∴直线FC的解析式为:yx﹣6,x,当x时,y,∴C();
解法二:过C作CD⊥x轴于D,连接OC,设C(m,m﹣6),则AC(6﹣m).
∵OC=BC,∴m2+(m﹣6)2=[5(6﹣m)],m,∴C().
科目:初中数学 来源: 题型:
【题目】如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接OE,若BC=4,求△OEC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.
(1)求证:∠ABC=∠AED;
(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=﹣1,下列结论正确的有_____(填序号).
①若图象过点(﹣3,y1)、(2,y2),则y1<y2;
②ac<0;
③2a﹣b=0;
④b2﹣4ac<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B点垂直起飞到高度为50米的A处,测得1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为_____米(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
| ﹣4 | ﹣4 | 0 | … |
(1)求该抛物线的表达式;
(2)已知点E(4, y)是该抛物线上的点,点E关于抛物线的对称轴对称的点为点F,求点E和点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末小明约上小亮一起到马山公园游玩,如图所示,小明从家(A点)出发,沿着北偏西60°方向的道路行走2千米到达小亮家(B点),然后两人再沿着北偏东45°方向一起去马山公园(C点),到达马山公园后小明发现自己家(A点)正好在马山公园(C点)的正南方向,求小明家(A家)到马山公园(C点)的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是临时暂停修建的一段乡村马路,高的一边已经修好,低的一边才刚做好路基.一辆汽车在高的一边沿箭头方向行驶时偏离了正常行驶路线后停止,但一侧的两个轮子已经驶入低的一边,经检查,地板AB刚接触到高的一边的路面边缘P,已知AB=130 cm,轮子A、B处在地板以下部分与地面的距离AC=BD=30 cm,两路面的高度差为50 cm.设路面是水平的,则PC的长是____________ cm.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com