精英家教网 > 初中数学 > 题目详情
11.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2

分析 设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25-2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.

解答 解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25-2x+1)m,由题意得
x(25-2x+1)=80,
化简,得x2-13x+40=0,
解得:x1=5,x2=8,
当x=5时,26-2x=16>12(舍去),当x=8时,26-2x=10<12,
答:所围矩形猪舍的长为10m、宽为8m.

点评 本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.计算$\frac{(-ab)^{2}}{{a}^{2}b}$的结果是b.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知锐角△ABC.
(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=$\frac{3}{4}$,求DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,关于x的二次函数y=-x2+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是(  )
A.4B.5C.6D.9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是(  )
A.2B.$\frac{2\sqrt{5}}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在Rt△ACB中,∠ACB=90°,点O是AC边上的一点,以O为圆心,OC为半径的圆与AB相切于点D,连接OD.
(1)求证:△ADO∽△ACB.
(2)若⊙O的半径为1,求证:AC=AD•BC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知反比例函数y=$\frac{k}{x}$与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积.

查看答案和解析>>

同步练习册答案