分析 (1)原式第一项利用绝对值的代数意义化简,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果;
(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.
解答 解:(1)原式=$\sqrt{2}$-2-2×$\frac{\sqrt{2}}{2}$+1=-1;
(2)原式=[$\frac{(a-1)^{2}}{(a+1)(a-1)}$+$\frac{1}{a}$]•(a+1)=($\frac{a-1}{a+1}$+$\frac{1}{a}$)•(a+1)=$\frac{{a}^{2}+1}{a(a+1)}$•(a+1)=$\frac{{a}^{2}+1}{a}$,
当a=$\sqrt{2}$时,原式=$\frac{3}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$.
点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 7 | B. | 6 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com