精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.

(1)求证:MH为⊙O的切线.
(2)若MH= ,tan∠ABC= ,求⊙O的半径.
(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.

【答案】
(1)

证明:

连接OH、OM,

∵H是AC的中点,O是BC的中点,

∴OH是△ABC的中位线,

∴OH∥AB,

∴∠COH=∠ABC,∠MOH=∠OMB,

又∵OB=OM,

∴∠OMB=∠MBO,

∴∠COH=∠MOH,

在△COH与△MOH中,

∴△COH≌△MOH(SAS),

∴∠HCO=∠HMO=90°,

∴MH是⊙O的切线


(2)

解:∵MH、AC是⊙O的切线,

∴HC=MH=

∴AC=2HC=3,

∵tan∠ABC=

=

∴BC=4,

∴⊙O的半径为2


(3)

解:

连接OA、CN、ON,OA与CN相交于点I,

∵AC与AN都是⊙O的切线,

∴AC=AN,AO平分∠CAD,

∴AO⊥CN,

∵AC=3,OC=2,

∴由勾股定理可求得:AO=

ACOC= AOCI,

∴CI=

∴由垂径定理可求得:CN=

设OE=x,

由勾股定理可得:CN2﹣CE2=ON2﹣OE2

﹣(2+x)2=4﹣x2

∴x=

∴CE=

由勾股定理可求得:EN=

∴由垂径定理可知:NQ=2EN=


【解析】(1)连接OH、OM,易证OH是△ABC的中位线,利用中位线的性质可证明△COH≌△MOH,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC= ,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.本题考查圆的综合问题,涉及垂径定理,勾股定理,全等三角形的判定与性质,切线的判等知识内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y轴交于点C(0,3),已知对称轴x=1.

(1)求抛物线L的解析式;
(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.

(1)求点C,D的坐标及平行四边形ABDC的面积.

(2)在y轴上是否存在一点P,连接PA,PB,使=2,若存在这样一点,求出点P的坐标,若不存在,试说明理由.

(3)点P是四边形ABCD边上的点,若△OPC为等腰三角形时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,已知ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连结BE、CD,猜想BE与CD有什么数量关系?并说明理由;

(2)请模仿正方形情景下构造全等三角形的思路,利用构造全等三角形完成下题:如图2,要测量池塘两岸相对的两点B、E的距离,已经测得ABC=45°CAE=90°,AB=BC=100米,AC=AE,求BE的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.

(1)求证:AG=CG.
(2)求证:AG2=GEGF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过反比例函数y= (x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若SAOB=2,则k的值为(  )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:
﹣1)÷ ,其中x的值从不等式组 的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线y=﹣ x+n交x轴于点A,交y轴于点C(0,4),抛物线y= x2+bx+c经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当△BDP为等腰直角三角形时,求线段PD的长;
(3)如图2,将△BDP绕点B逆时针旋转,得到△BD′P′,且旋转角∠PBP′=∠OAC,当点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,∠AOB . 求作:∠A′O′B′,使∠A′O′B′=AOB . 作法:

①以________为圆心,________为半径画弧.分别交OA , OB于点C , D .

②画一条射线O′A′,以________为圆心,________长为半径画弧,交O′A′于点C′,

③以点________为圆心________长为半径画弧,与第2步中所画的弧交于点D′.

④过点________画射线O′B′,则∠A′O′B′=AOB .

查看答案和解析>>

同步练习册答案