精英家教网 > 初中数学 > 题目详情

【题目】(1)计算:|﹣1|﹣(0+2cos60°
(2)解不等式:3(x﹣)<x+4.

【答案】【解答】解:(1)原式=1﹣1+2×=1;
(2)原不等式可化为3x﹣2<x+4,
∴3x﹣x<4+2,
∴2x<6,
∴x<3.
【解析】(1)利用绝对值的求法、零指数幂及锐角三角函数的知识代入求解即可;
(2)去括号、移项、合并同类项、系数化为1后即可求得不等式的解集.
【考点精析】利用零指数幂法则和一元一次不等式的解法对题目进行判断即可得到答案,需要熟知零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);步骤:①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1(特别要注意不等号方向改变的问题).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c.

(1)特例探索
如图1,当∠ABE=45°,c=2时,a= ,b=  .
如图2,当∠ABE=30°,c=4时,a= ,b=
(2)归纳证明
请你观察(1)中的计算结果,猜想a2 , b2 , c2三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.
(3)如图4,在ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=2,AB=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为(  )

A.①②
B.②③
C.①②③
D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为「P」,即「P」=|x|+|y|.(其中的“+”是四则运算中的加法)
(1)求点A(﹣1,3),B(+2,﹣2)的勾股值「A」、「B」。
(2)点M在反比例函数y=的图象上,且「M」=4,求点M的坐标。
(3)求满足条件「N」=3的所有点N围成的图形的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)

(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品.

(1)如果随机翻1张牌,那么抽中20元奖品的概率为
(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.

(1)如图1,求证:EAEC=EBED
(2)如图2,若 , AD是⊙O的直径,求证:ADAC=2BDBC
(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(﹣1,0),如图所示:抛物线y=ax2+ax﹣2经过点B.

(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案