精英家教网 > 初中数学 > 题目详情
12.若x是不等于1的实数,我们把$\frac{1}{1-x}$称为x的差倒数,如2的差倒数是$\frac{1}{1-2}$=-1,-1的差倒数为$\frac{1}{1-(-1)}$=$\frac{1}{2}$,现已知x1=-$\frac{1}{3}$,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2015=$\frac{3}{4}$.

分析 根据已知条件可以先计算出几个x的值,从而可以发现其中的规律,求出x2015的值.

解答 解:由已知可得,
x1=-$\frac{1}{3}$,
x2=$\frac{1}{1-(-\frac{1}{3})}$=$\frac{3}{4}$,
x3=$\frac{1}{1-\frac{3}{4}}$=4,
x4=$\frac{1}{1-4}$=-$\frac{1}{3}$,
可知每三个一个循环,
2015÷3=671…2,
故x2015=$\frac{3}{4}$.

点评 本题考查实数的性质,解题的关键是发现其中的规律,求出相应的x的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.已知:如图,正比例函数y1=kx(k>0)的图象与反比例函数y2=$\frac{6}{x}$的图象相交于点A和点C,设点C的坐标为(2,n).
(1)①求k与n的值;②试利用函数图象,直接写出不等式kx-$\frac{6}{x}$<0的解集;
(2)点B是x轴上的一个动点,连结AB、BC,作点A关于直线BC的对称点Q,在点B的移动过程中,是否存在点B,使得四边形ABQC为菱形?若存在,求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟.根据以上条件,下列说法不正确的是(  )
A.设上坡路长x千米,可列方程$\frac{x}{3}-\frac{x}{5}=\frac{54}{60}-\frac{42}{60}$
B.设上坡路长x千米,平路长y千米,可列方程组$\left\{\begin{array}{l}\frac{x}{3}+\frac{y}{4}=\frac{54}{60}\\ \frac{x}{5}+\frac{y}{4}=\frac{42}{60}.\end{array}\right.$
C.列算式(54-42)÷(5-3)即可求出上坡路长.
D.根据条件,能求出甲地到乙地的全程是3.1千米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,AB=7,BC=4$\sqrt{2}$,∠B=45°,动点P、Q同时出发,点P沿A-C-B运动,在边AC的速度为每秒1个单位长度,在边CB的速度为每秒$\sqrt{2}$个单位长度;点Q沿B-A-B以每秒2个单位长度的速度运动,其中一个动点到达终点时,另一个动点也停止运动,在运动过程中,过点P作AB的垂线与AB交于点D,以PD为边向由作正方形PDEF;过点Q作AB的垂线l.设正方形PDEF与△ABC重叠部分图形的面积为y(平方单位),运动时间为t(秒).
(1)当点P运动点C时,PD的长度为4.
(2)求点D在直线l上时t的值.
(3)求y与t之间的函数关系式.
(4)在运动过程中,是否存在某一时刻t使得在直线上任取一点H,均有HD=HE?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).
①作∠DAC的平分线AM.②连接BE并延长交AM于点F.
(2)猜想:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.
(3)探究:当AF与EC有怎样的数量关系时,△ABC是等边三角形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.在矩形ABCD中,点P在AD上,AB=2,AP=1,将三角板的直角顶点放在点P处,三角板的两直角边分别能与AB、BC边相交于点E、F,连接EF.
(1)如图,当点E与点B重合时,点F恰好与点C重合,求此时PC的长;
(2)将三角板从(1)中的位置开始,绕点P顺时针旋转,当点E与点A重合时停止,在这个过程中,请你观察、探究并解答:
①∠PEF的大小是否发生变化?请说明理由;
②在旋转中,当点F与BC边中点重合时,求四边形AEFP的面积;
③直接写出从开始到停止,线段EF的中点所经过的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算
(1)a•a5
(2)a•a5•a3
(3)(x43
(4)(y32•(y25
(5)(xy3n2+(xy6n
(6)(-3x32-[(2x)2]3
(7)(-xy)7÷(-xy)2=
(8)32m+1÷3m-1=
(9)(-3ab)(-a2c)2•6ab(c23
(10)(x+2)(x+3)
(11)(3x+2)(3x-2)
(12)20012-19992
(13)(2x-3)2
(14)($\frac{1}{3}$x+6y)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,能判定EC∥AB的条件是(  )
A.∠B=∠ACBB.∠A=∠ACEC.∠B=∠ACED.∠A=∠ECD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)计算:($\frac{2}{3}$a4b7-$\frac{1}{9}$a2b6)÷($\frac{1}{3}$ab32
(2)先化简,再求值:[(2x-y)2+(4x+y)(4x-y)-12xy]÷(4x),其中x=8,y=-3.

查看答案和解析>>

同步练习册答案