精英家教网 > 初中数学 > 题目详情

【题目】某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买AB两种笔记本作为奖品,已知AB两种每本分别为12元和20元,设购入Ax本,By本.

1)求y关于x的函数表达式.

2)若购进A种的数量不少于B种的数量.

①求至少购进A种多少本?

②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)

【答案】1y,(2)①至少购进A40本,②30

【解析】

1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;

2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;

②设B种的数量m本,C种的数量n本,根据题意找出mn的关系式,再根据调换后C种的数量多于B种的数量,列出不等式,可求解.

解:(1)∵12x+20y1200

y

2)①∵购进A种的数量不少于B种的数量,

xy

x

x

xy为正整数,

∴至少购进A40本,

②设A种的数量为x本,B种的数量y本,C种的数量c本,

根据题意得:12x+20y+8c1200

y

C种的数量多于B种的数量

cy

c

c

∵购进A种的数量不少于B种的数量,

xy

x

c1504x

c

xyc为正整数,

C种至少有30

故答案为30本.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1__ __S2+S3;(填“>”“=”或“<”)

(2)写出图中的三对相似三角形,并选择其中一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知第一象限内的点A在反比例函数y=的图象上第二象限内的点B在反比例函数y=的图象上OAOB,cosA=k的值为( )

A. -3 B. -4 C. D. -2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,∠ACB与∠CAB的平分线交于点PPDAB于点D,若△APC△APD的周长差为,四边形BCPD的周长为12+,则BC等于______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为( )

A. A→B→C→D→A B. B→C→D→A→B

C. B→C→A→D→B D. D→A→B→C→D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小昊遇到这样一个问题:如图1,在ABC中,∠ACB=90°,BEAC边上的中线,点DBC边上,CD:BD=1:2,ADBE相交于点P,求的值.

小昊发现,过点AAFBC,交BE的延长线于点F,通过构造AEF,经过推理和计算能够使问题得到解决(如图2).请回答的值为 

参考小昊思考问题的方法,解决问题:

如图 3,在ABC中,∠ACB=90°,点DBC的延长线上,ADAC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,则BP=__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD的对角线ACBD交于点O,求证:AB2+BC2+CD2+DA2=AC2+BD2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,平面直角坐标系xOy中,四边形OABC是矩形,点AC的坐标分别为(6,0),(0,2).点D是线段BC上的一个动点(点D与点BC不重合),过点D作直线y=-x+b交折线OAB于点E.

(1)在点D运动的过程中,若ODE的面积为S,求Sb的函数关系式,并写出自变量的取值范围;

(2)如图2,当点E在线段OA上时,矩形OABC关于直线DE对称的图形为矩形OABC′,CB分别交CBOA于点DMOA分别交CBOA于点NE.求证:四边形DMEN是菱形;

(3)问题(2)中的四边形DMEN中,ME的长为____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.

(1)总体是 ,个体是 ,样本容量是

(2)求第四小组的频数和频率;

(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.

查看答案和解析>>

同步练习册答案