精英家教网 > 初中数学 > 题目详情

【题目】如图,已知菱形ABCD的周长为16,面积为,EAB的中点,若P为对角线BD上一动点,则EP+AP的最小值为(  )

A. 2 B. 2 C. 4 D. 4

【答案】B

【解析】试题解析:如图作CE′ABE′,交BDP′,连接AC、AP′.

∵已知菱形ABCD的周长为16,面积为8

AB=BC=4,ABCE′=8

CE′=2

RtBCE′中,BE′=

BE=EA=2,

EE′重合,

∵四边形ABCD是菱形,

BD垂直平分AC,

A、C关于BD对称,

∴当PP′重合时,P′A+P′E的值最小,最小值为CE的长=2

故选:B.

型】单选题
束】
11

【题目】9的平方根是_____

【答案】±3

【解析】试题解析:∵(±3)2=9,

±=±3

9的平方根是±3.

故答案为:±3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、BOC

(1)求∠DOE的度数;

(2)如图2,在∠AOD内引一条射线OF,使∠COF=,其他不变,设∠DOF=

①求∠AOF的度数(用含的代数式表示).

②若∠BOD是∠AOF2倍,求∠DOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(背景知识)

数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:

例如,若数轴上点、点表示的数分别为,则两点之间的距离,线段的中点表示的数为

(问题情境)

在数轴上,点表示的数为-20,点表示的数为10,动点从点出发沿数轴正方向运动,同时,动点也从点出发沿数轴负方向运动,已知运动到4秒钟时,两点相遇,且动点运动的速度之比是(速度单位:单位长度/秒).

备用图

(综合运用)

1)点的运动速度为______单位长度/秒,点的运动速度为______单位长度/秒;

2)当时,求运动时间;

3)若点在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点的运动,线段的中点也随着运动.问点能否与原点重合?若能,求出从相遇起经过的运动时间,并直接写出点的运动方向和运动速度;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x轴上有点A(1,0),点By轴上,点C(m,0)为x轴上一动点且m<﹣1,连接AB,BC,tanABO=,以线段BC为直径作⊙M交直线AB于点D,过点B作直线lAC,过A,B,C三点的抛物线为y=ax2+bx+c,直线l与抛物线和⊙M的另一个交点分别是E,F.

(1)求B点坐标;

(2)用含m的式子表示抛物线的对称轴;

(3)线段EF的长是否为定值?如果是,求出EF的长;如果不是,说明理由.

(4)是否存在点C(m,0),使得BD=AB?若存在,求出此时m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上两点AB对应的数分别为-300.若点AB同时出发,点A以每秒2个单位长度的速度向右运动;点B以每秒3个单位长度的速度向左运动,到达点A出发时的位置后立即以每秒4个单位长度的速度向右运动.设运动的时间为t秒.

1)求点A和点B第一次相遇时t的值;

2)当点A和点B之间的距离为6个单位长度时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:()2+(﹣4)0cos45°.

【答案】1

【解析】试题分析:把原式的第一项根据负整数指数幂的意义化简,第二项根据算术平方根的定义求出9的算术平方根,第三项根据零指数公式化简,最后一项利用特殊角的三角函数值化简,合并后即可求出值.

试题解析:原式=4﹣3+1﹣

=2﹣1

=1.

型】解答
束】
16

【题目】《九章算术》勾股章有一题:今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何.大意是说,已知甲、乙二人同时从同一地

点出发,甲的速度为7,乙的速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在半径为4⊙O中,ABCD是两条直径,MOB的中点,CM的延长线交⊙O于点E,且EMMC.连结DEDE

1求证:

2EM的长;

3)求sin∠EOB的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点AB在数轴上分别对应的数为ab,则AB两点间的距离表示为|AB|=|ab|

根据以上知识解题:

1)若数轴上两点AB表示的数为x﹣1

AB之间的距离可用含x的式子表示为  

若该两点之间的距离为2,那么x值为  

2|x+1|+|x﹣2|的最小值为  ,此时x的取值是  

3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|=15,求x﹣2y的最大值 和最小值  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,菱形中,分别是上的点,且,则__________度.

查看答案和解析>>

同步练习册答案