精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,AB∥CD,∠A=90°,AB=5,CD=2.以A为圆心,AD为半径的圆与BC边相切于点M,与AB交于点E,将扇形A﹣DME剪下围成一个圆锥,则圆锥的高为(
A.1
B.4
C.
D.

【答案】C
【解析】解:如图,作CF⊥AB于F,连接AM.
∵AD∥CF,CD∥AF,
∴四边形ADCF是平行四边形,
∴∠A=90°,
∴四边形ADCF是矩形,
∴AD=CF=AM,CD=AF=2,
∵AB=5,∴BF=3,
在△AMB和△CFB中,

∴△AMB≌△CFB,
∴BM=BF=3,
在Rt△AMB中,AM= = =4,
设圆锥的高为h,底面半径为r,
由题意2πr= 2π4,
∴r=1,
∴h= =
故选C.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对圆锥的相关计算的理解,了解圆锥侧面展开图是一个扇形,这个扇形的半径称为圆锥的母线;圆锥侧面积S=πrl;V圆锥=1/3πR2h.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为测量某特种车辆的性能,研究制定了行驶指数P,P=K+1000,而K的大小与平均速度v(km/h)和行驶路程s(km)有关(不考虑其他因素),K由两部分的和组成,一部分与v2成正比,另一部分与sv成正比.在实验中得到了表格中的数据:

速度v

40

60

路程s

40

70

指数P

1000

1600


(1)用含v和s的式子表示P;
(2)当行驶指数为500,而行驶路程为40时,求平均速度的值;
(3)当行驶路程为180时,若行驶指数值最大,求平均速度的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为4个等边三角形,D为AB边的中点,以CD为直径画圆,则图中阴影部分的面积为(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.
(1)求证:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.

(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s= ,当t为何值时,s有最小值,并求出最小值.

(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: ﹣|2 ﹣9tan30°|+( 1﹣(1﹣π)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.

(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,AB=AC=3 ,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为

查看答案和解析>>

同步练习册答案