【题目】在正方形ABCD中,连接BD.
(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)
【答案】(1)∠BAE的度数为45°;(2)①补全图见解析;②BM、DN和MN之间的数量关系是BM2+MD2=MN2,理由见解析;(3)思路见解析.
【解析】(1)利用等腰直角三角形的性质即可;
(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;
(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.
解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,
∵AE⊥BD,∴∠ABE=∠BAE=45°,
(2)①依题意补全图形,如图1所示,
②BM、DN和MN之间的数量关系是BM2+MD2=MN2,
将△AND绕点D顺时针旋转90°,得到△AFB,
∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,
∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,
∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,
在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,
∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,
∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,
∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,
∵FB2+BM2=FM2,∴DN2+BM2=MN2,
(3)如图2,
将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,
∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,
∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF
∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,
∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,
∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到DN2+BM2=MN2.
“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.
科目:初中数学 来源: 题型:
【题目】下列事件是必然事件的是( )
A.明天是晴天
B.有一匹马的奔跑速度是100米/秒
C.打开电视正在播广告
D.在地面上向空中抛掷一石块,石块终将落下
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据萧山区劳动保障局统计,到“十一五”末,全区累计参加各类养老保险总人数达到88.2万人,比“十五”末增加37.7万人,参加各类医疗保险总人数达到130.5万人,将数据130.5万用科学记数法(精确到十万位)表示为( )
A.1.3×102
B.1.305×106
C.1.3×106
D.1.3×105
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD中,对角线AC,BD相交于点O,下列判断中,不能判断四边形ABCD是矩形的是( )
A.AB=CD,AD=BC,∠BAD=90°
B.OA=OB=OC=OD
C.AB∥CD且AB=CD,AC=BD
D.AB∥CD且AB=CD,OA=OC,OB=OD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年4月17日,国家统计局公布2019年一季度中国经济数据.初步核算,一季度国内生产总值213433亿元,按可比价格计算,同比增长6.4%.数据213433亿用科学记数法表示应为( )
A.2.13433×1013B.0.213433×1014
C.213.433×1012D.2.13433×1014
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com