精英家教网 > 初中数学 > 题目详情
5.已知方程3x2-x-3=0的两根为x1和x2,不解方程求下列各式的值
(1)x${\;}_{1}^{2}$+x${\;}_{2}^{2}$;
(2)|x1-x2|;
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$.

分析 根据根与系数的关系找出“x1+x2=$\frac{1}{3}$,x1•x2=-1”,再将(1)(2)(3)中算式变形为只含两根之和与两根之积的形式,代入数据即可得出结论.

解答 解:∵方程3x2-x-3=0的两根为x1和x2
∴x1+x2=$\frac{1}{3}$,x1•x2=-1.
(1)${{x}_{1}}^{2}+{{x}_{2}}^{2}$=$({x}_{1}+{x}_{2})^{2}$-2x1•x2=$(\frac{1}{3})^{2}$-2×(-1)=$\frac{19}{9}$;
(2)|x1-x2|=$\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}•{x}_{2}}$=$\sqrt{(\frac{1}{3})^{2}-4×(-1)}$=$\frac{\sqrt{37}}{3}$;
(3)${{x}_{1}}^{3}+{{x}_{2}}^{3}$=(x1+x2)(${{x}_{1}}^{2}$-x1•x2+${{x}_{2}}^{2}$)=(x1+x2)[$({x}_{1}+{x}_{2})^{2}$-3x1•x2]=$\frac{1}{3}$×[$(\frac{1}{3})^{2}$-3×(-1)]=$\frac{28}{27}$.

点评 本题考查了根与系数的关系,解题的关键是:(1)将算式变形为$({x}_{1}+{x}_{2})^{2}$-2x1•x2;(2)将算式变形为$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}•{x}_{2}}$;(3)将算式变形为(x1+x2)[$({x}_{1}+{x}_{2})^{2}$-3x1•x2].本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和、两根之积是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,对于P(a,b)和点Q(a,b′),给出如下定义:若b′=$\left\{\begin{array}{l}{b(a≥1)}\\{-b(a<1)}\end{array}\right.$,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5).
(1)点($\sqrt{3}$,1)的限变点的坐标是($\sqrt{3}$,1);
(2)判断点A(-2,-1)、B(-1,2)中,哪一个点是函数y=$\frac{2}{x}$图象上某一个点的限变点?并说明理由;
(3)若点P(a,b)在函数y=-x+3的图象上,其限变点Q(a,b′)的纵坐标的取值范围是-6≤b′≤-3,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,以△ABC的边AB为直径的⊙O交AC边于点D,且过点D的⊙O的切线DE平分BC边,交BC于点E.
(1)求证:BC是⊙O的切线;
(2)当∠A=45°时,以点O、B、E、D为顶点的四边形是正方形;
(3)以点O、B、E、D为顶点的四边形不可能(可能、不可能)为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.化分式方程$\frac{1}{5{x}^{2}-5}$-$\frac{3}{{x}^{2}-1}$-$\frac{4}{1-x}$=0为整式方程时,方程两边同乘(  )
A.(5x2-5)(x2-1)(1-x)B.5(x2-1)(1-x)C.5(x2-1)(x+1)D.5(x+1)(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在?ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.
(1)求证:四边形ABEF是菱形;
(2)若AB=5,BF=8,AD=$\frac{15}{2}$,则?ABCD的面积是36.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知关于x的一元二次方程x2-2kx+k2+2=2(1-x)有两个实数根x1、x2,求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知直线l1:y1=x+m与直线l2:y2=nx+3相交于点A(1,2).
(1)求m、n的值;
(2)请在所给坐标系中画出直线l1和l2,并根据图象回答问题:
当x满足x>1时,y1>2;当x满足0≤x<3时,0<y2≤3;当x满足x<1时,y1<y2
(3)设l1交x轴于点B,l2交x轴于点C,若点D与点A,B,C能构成平行四边形,直接写出D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列图形中,是中心对称图形,但不是轴对称图形的是(  )
A.矩形B.平行四边形C.直角梯形D.等腰梯形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是(  )
A.0或2B.0或1C.1或2D.0,1,或2

查看答案和解析>>

同步练习册答案