精英家教网 > 初中数学 > 题目详情
10.已知关于x的一元二次方程x2-2kx+k2+2=2(1-x)有两个实数根x1、x2,求实数k的取值范围.

分析 由于关于x的一元二次方程x2-2kx+k2+2=2(1-x)有两个实数根,可知△≥0,据此进行计算即可.

解答 解:∵关于x的一元二次方程x2-2kx+k2+2=2(1-x)有两个实数根x1、x2
∴△≥0,
∴[2(k-1)]2-4k2≥0,
∴k2-2k+1-k2≥0,
整理得,-2k+1≥0,
解得k≤$\frac{1}{2}$.
故实数k的取值范围为k≤$\frac{1}{2}$.

点评 本题考查了根的判别式,要知道一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.已知方程组$\left\{\begin{array}{l}{a+b=-3}\\{b+c=2}\\{a+c=-9}\end{array}\right.$,则a+b+c的值为(  )
A.6B.-6C.5D.-5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,已知在四边形ABCD中,AB∥CD,AB=CD,E为AB上一点,过点E作EF∥BC,交CD于点F,G为AD上一点,H为BC上一点,连接CG,AH.若GD=BH,则图中的平行四边形有(  )
A.2个B.3个C.4个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直角三角形ABC中,∠CAB=30°,AB=8,以AB中点为原点,AB边所在的直线为x轴,建立平面直角坐标系,AC边交y轴于点M,直线BN交y轴于点N
(1)求点C的坐标;
(2)求直线BC的函数解析式;
(3)求证:MC=MO;
(4)将线段OC沿x轴平移到O1C1,如果O1C1将三角形ABC的面积分为1:3两部分,出此时点O1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知方程3x2-x-3=0的两根为x1和x2,不解方程求下列各式的值
(1)x${\;}_{1}^{2}$+x${\;}_{2}^{2}$;
(2)|x1-x2|;
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.若关于x的方程x2+(p+2)x+1=0没有正实数根,求实数p的取值范囤.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2=130°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在矩形ABCD中,点O在对角线AC上,以OA长为半径的⊙O与AD,AC分别交于点E,F,连接CE并延长交BA的延长线于点G,且AE=DE,∠ACB=∠DCE
(1)求证:△AEG≌△DEC;
(2)判断直线CG与⊙O的位置关系,并证明你的结论;
(3)若CG=$\sqrt{6}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,抛物线y=-$\frac{1}{2}$x2+x+4与x轴交于A,B两点,与y轴交于点C,顶点为点P,动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.
(1)当四边形OMHN为矩形时,求点H的坐标;
(2)是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案