精英家教网 > 初中数学 > 题目详情
2.如图,直线l1∥l2,∠α=∠β,∠1=50°,则∠2=130°.

分析 先根据平行线的性质,由l1∥l2得∠3=∠1=40°,再根据平行线的判定,由∠α=∠β得AB∥CD,然后根据平行线的性质得∠2+∠3=180°,再把∠1=40°代入计算即可.

解答 解:如图,
l1∥l2
∴∠3=∠1=50°,
∵∠α=∠β,
∴AB∥CD,
∴∠2+∠3=180°,
∴∠2=180°-∠3=180°-50°=130°.
故答案为:130°.

点评 本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,在?ABCD中,连接BD,AD⊥BD,AB=4cm,BD=3cm,则?ABCD的面积为3$\sqrt{7}$cm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.化分式方程$\frac{1}{5{x}^{2}-5}$-$\frac{3}{{x}^{2}-1}$-$\frac{4}{1-x}$=0为整式方程时,方程两边同乘(  )
A.(5x2-5)(x2-1)(1-x)B.5(x2-1)(1-x)C.5(x2-1)(x+1)D.5(x+1)(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知关于x的一元二次方程x2-2kx+k2+2=2(1-x)有两个实数根x1、x2,求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知直线l1:y1=x+m与直线l2:y2=nx+3相交于点A(1,2).
(1)求m、n的值;
(2)请在所给坐标系中画出直线l1和l2,并根据图象回答问题:
当x满足x>1时,y1>2;当x满足0≤x<3时,0<y2≤3;当x满足x<1时,y1<y2
(3)设l1交x轴于点B,l2交x轴于点C,若点D与点A,B,C能构成平行四边形,直接写出D点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列图形中,绕某个点旋转180°能与自身重合的图形有(  )
(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列图形中,是中心对称图形,但不是轴对称图形的是(  )
A.矩形B.平行四边形C.直角梯形D.等腰梯形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知抛物线y=mx2-(m-5)x-5(m>0),与x轴交于两点A(x1,0),B(x2,0),(x1<x2),与y轴交于点C且AB=6.
(1)求抛物线和直线BC的解析式;
(2)画出它们的大致图象;
(3)抛物线上是否存在点M,过点M作MN⊥X轴于点N,使△MBN被直线BC分成面积1:3的两部分?若存在,求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,点A的坐标为(0,3),将点A向右平移6个单位得到点B,过点B作BC⊥x轴于C.
(1)求B、C两点坐标及四边形AOCB的面积;
(2)点Q自O点以1个单位/秒的速度在y轴上向上运动,点P自C点以2个单位/秒的速度在x轴上向左运动,设运动时间为t秒(0<t<3),是否存在一段时间,使得S△BOQ<$\frac{1}{2}{S}_{△BOP}$,若存在,求出t的取值范围;若不存在,说明理由.
(3)求证:S四边形BPOQ是一个定值.

查看答案和解析>>

同步练习册答案