【题目】已知,在平面直角坐标系xOy中,点A的坐标为(0,2),点P(m,n)是抛物线上的一个动点.
(1)如图1,过动点P作PB⊥x轴,垂足为B,连接PA,请通过测量或计算,比较PA与PB的大小关系:PA_____PB(直接填写“>”“<”或“=”,不需解题过程);
(2)请利用(1)的结论解决下列问题:
①如图2,设C的坐标为(2,5),连接PC,AP+PC是否存在最小值?如果存在,求点P的坐标;如果不存在,简单说明理由;
②如图3,过动点P和原点O作直线交抛物线于另一点D,若AP=2AD,求直线OP的解析式.
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于、两点(点在点的左侧),与轴交于点,顶点为.
(1)请求出、两点的坐标;
(2)将抛物线绕平面内的某一点旋转180°,旋转后得到抛物线,抛物线的顶点为,与轴相交于、两点(点在点的右侧),使得抛物线过点,且以点、、、为顶点的四边形为平行四边形,请求出所有满足条件的抛物线的顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知和均为的等边三角形,点为的中点,过点与平行的直线交射线于点.
(1)当,,三点在同一直线上时(如图1),求证:为中点;
(2)将图1中的绕点旋转,当,,三点在同一直线上时(如图2),求证:为等边三角形;
(3)将图2中绕点继续顺时针旋转多少度时,点恰好第一次位于线段中点,试作出图形并直接写出绕点继续旋转的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016山东省烟台市)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(题文)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设 =n.
(1)求证:AE=GE;
(2)当点F落在AC上时,用含n的代数式表示的值;
(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:在平面直角坐标系中,已知抛物线与轴交于,两点(点在点的右侧),与轴交于点,它的对称轴与轴交于点,直线经过,两点,连接.
(1)求,两点的坐标及直线的函数表达式;
(2)探索直线上是否存在点,使为直角三角形,若存在,求出点的坐标;若不存在,说明理由;
(3)若点是直线上的一个动点,试探究在抛物线上是否存在点:
①使以点,,,为顶点的四边形为菱形,若存在,请直接写出点的坐标;若不存在,说明理由;
②使以点,,,为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y = ax2 2ax + c图像的顶点为P,与x轴交于A、B两点(其中点A在点B的左侧),与y轴交于点C,它的对称轴交直线BC交于点D,且CD︰BD=1︰2.
(1)求B点坐标;
(2)当△CDP的面积是1时,求二次函数的表达式;
(3)若直线BP交y轴于点E,求当△CPE是直角三角形时的a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若点M是轴正半轴上任意一点,过点M作PQ∥轴,分别交函数和的图象于点P和Q,连接OP和OQ.则下列结论正确的是( )
A.∠POQ不可能等于90°B.
C.这两个函数的图象一定关于轴对称D.△POQ的面积是
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是垂直于水平面的建筑物,为测量的高度,小红从建筑物底端出发,沿水平方向行走了52米到达点,然后沿斜坡前进,到达坡顶点处,.在点处放置测角仪,测角仪支架高度为0.8米,在点处测得建筑物顶端点的仰角为(点,,,在同一平面内),斜坡的坡度(或坡比),求建筑物的高度.(精确到个位)(参考数据:)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com