精英家教网 > 初中数学 > 题目详情

【题目】(题文)如图,在矩形ABCD中,点EAD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点FGFAFAD于点G,设 =n.

(1)求证:AE=GE;

(2)当点F落在AC上时,用含n的代数式表示的值;

(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.

【答案】(1)见解析;(2);(3)n=16 8+4.

【解析】试题(1)因为GFAF,由对称易得AE=EF,则由直角三角形的两个锐角的和为90度,且等边对等角,即可证明EAG的中点;(2)可设AE=a,则AD=na,即需要用na表示出AB,由BEAF和∠BAE==∠D=90°,可证明△ABE~△DAC,因为AB=DC,且DAAE已知表示出来了,所以可求出AB,即可解答;(3)求以点FCG为顶点的三角形是直角三角形时的n,需要分类讨论,一般分三个,∠FCG=90°,∠CFG=90°,∠CGF=90°;根据点F在矩形ABCD的内部就可排除∠FCG=90°,所以就以∠CFG=90°和∠CGF=90°进行分析解答.

试题解析:(1)证明:由对称得AE=FE,∴∠EAF=∠EFA,∵GFAE,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EFAE=EG

(2)解:设AE=a,则AD=na,当点F落在AC上时(如图1),由对称得BEAF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,又∵∠BAE=∠D=90°,∴△ABE~△DAC

AB=DC,∴AB2=AD·AE=na·a=na2,∵AB>0,∴AB== =,∴=

(3)解:设AE=a,则AD=na,由AD=4AB,则AB=

当点F落在线段BC上时(如图2),EF=AE=AB=a,此时,∴n=4,∴当点F落在矩形外部时,n>4.

∵点F落在矩形的内部,点GAD上,∴∠FCG<∠BCD,∴∠FCG<90°,若∠CFG=90°,则点F落在AC上,由(2)得=,∴n=16.

若∠CGF=90°(如图3),则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE~△DGC,∴ ,∴AB·DC=DG·AE,即

解得 n=n=<4(不合题意,舍去),∴当n=16 时,以点FCG为顶点的三角形是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等边与正方形重叠,其中两点分别在上,且,若,则的面积为(

A. 1B.

C. 2D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线l:y=(x﹣h)2﹣4(h为常数)

(1)如图1,当抛物线l恰好经过点P(1,﹣4)时,lx轴从左到右的交点为A、B,与y轴交于点C.

①求l的解析式,并写出l的对称轴及顶点坐标.

②在l上是否存在点D,使SABD=SABC若存在,请求出D点坐标,若不存在,请说明理由.

③点Ml上任意一点,过点MME垂直y轴于点E,交直线BC于点D,过点Dx轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点M的坐标.

(2)设l与双曲线y=有个交点横坐标为x0且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,菱形ABCD中,AB=5cm,动点P从点B出发,沿折线BC﹣CD﹣DA运动到点A停止,动点Q从点A出发,沿线段AB运动到点B停止,它们运动的速度相同,设点P出发xs时,△BPQ的面积为ycm2已知yx之间的函数关系如图②所示,其中OM,MN为线段,曲线NK为抛物线的一部分,请根据图中的信息,解答下列问题:

(1)当1<x<2时,△BPQ的面积________(填不变”);

(2)分别求出线段OM,曲线NK所对应的函数表达式;

(3)当x为何值时,△BPQ的面积是5cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:

(1)请将表一和图一中的空缺部分补充完整.

(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.

(3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017浙江省嘉兴市,第20题,8分)如图,一次函数)与反比例函数的图象交于点A(﹣1,2),Bm,﹣1).

(1)求这两个函数的表达式;

(2)在x轴上是否存在点Pn,0)(n>0),使ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某日的钱塘江观潮信息如表:

按上述信息,小红将交叉潮形成后潮头与乙地之间的距离(千米)与时间(分钟)的函数关系用图3表示,其中:11:40时甲地交叉潮的潮头离乙地12千米记为点,点坐标为,曲线可用二次函数是常数)刻画.

(1)求的值,并求出潮头从甲地到乙地的速度;

(2)11:59时,小红骑单车从乙地出发,沿江边公路以千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?

(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度是加速前的速度).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):

(1)作ABC的外心O;

(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一系列图案,请仔细观察,并回答下列问题:

1)第4个图案中有白色纸片多少张?

2)第n个图案中有白色纸片多少张?

3)第几个图案有白色纸片有2011张?(写出必要的步骤)

查看答案和解析>>

同步练习册答案