精英家教网 > 初中数学 > 题目详情
如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC=30°,AB=2.求CF的长.
考点:平行四边形的判定与性质
专题:
分析:首先证明四边形ABDE是平行四边形,可得AB=DE=CD,即D为CE中点,然后再得CE=4,再利用三角函数可求出HF和CH的长即可.
解答:解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=DC,
∵AE∥DB,
∴四边形ABDE是平行四边形,
∴AB=DE=CD,即D为CE中点,
∵AB=2,
∴CE=4,
∵AB∥CD,
∴∠ECF=∠ABC=45°,
过E作EH⊥BF于点H,
∵CE=4,∠ECF=45°,
∴EH=CH=2
2

∵∠EFC=30°,
∴FH=2
6

∴CF=2
2
+2
6
点评:此题主要考查了平行四边形的判定与性质,以及三角函数的应用,关键是掌握平行四边形对边相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

九(1)班班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图所示的折线统计图,与上月比较阅读数量变化率最大的月份是(  )
A、2月B、5月C、6月D、7月

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=
3
4
x-
3
2
与抛物线y=-
1
4
x2+bx+c交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD前进1000m后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

在如图的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(-4,4),(-1,2).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)以原点O为位似中心,将△ABC放大为原来的2倍,得到△A1B1C1,则点A的对应点A1的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD中,AB=8,AD=6.动点P从点A出发,沿线段AB(不包括端点A,B)以每秒2个单位长度的速度,匀速向点B运动;动点Q从点B出发,沿线段BC(不包括端点B,C)以每秒1个单位长度的速度,匀速向点C运动.连接DQ并延长交AB的延长线于点E,把DE沿DC翻折交BC延长线于点F,连接EF.点P,Q同时出发,同时停止,设运动时间为t秒.
(1)当DP⊥DF时,求t的值;
(2)当PQ∥DF时,求t的值;
(3)在运动的过程中,△DEF的面积是否变化?如果改变,求出变化的范围;如果不变,求出它的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

某区对参加2014年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:
视力 频数(人) 频率
4.0≤x<4.3 20 0.1
4.3≤x<4.6 40 0.2
4.6≤x<4.9 70 0.35
4.9≤x<5.2 a 0.3
5.2≤x<5.5 10 b
(1)在频数分布表中,a的值为
 
,b的值为
 
,并将频数分布直方图补充完整;
(2)甲同学说:“我的视力情况是此次抽样调查所得数据的中位数”,则甲同学的视力情况范围是
 

(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是
 
;并根据上述信息估计全区初中毕业生中视力正常的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙0是△ABC的外接圆,半径长为5,点D、E分别是边AB和边AC是中点,AB=AC,BC=6.求∠OED的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若一元二次方程x2-(a+1)x+a=0的两个实数根分别是2、b,则a-b=
 

查看答案和解析>>

同步练习册答案