精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.
(1)求证:AP=AO;
(2)求证:PE⊥AO;
(3)当AE=
3
8
AC,AB=10时,求线段BO的长度.
考点:相似三角形的判定与性质,全等三角形的判定与性质,角平分线的性质,等腰三角形的判定与性质
专题:几何综合题,压轴题
分析:(1)根据等角的余角相等证明即可;
(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;
(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10-4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.
解答:(1)证明:∵∠C=90°,∠BAP=90°
∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,
又∵∠CBO=∠ABP,
∴∠BOC=∠APB,
∵∠BOC=∠AOP,
∴∠AOP=∠APB,
∴AP=AO;

(2)证明:如图,过点O作OD⊥AB于D,
∵∠CBO=∠ABP,
∴CO=DO,
∵AE=OC,
∴AE=OD,
∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,
∴∠AOD=∠PAE,
在△AOD和△PAE中,
AE=OD
∠AOD=∠PAE
AP=AO

∴△AOD≌△PAE(SAS),
∴∠AEP=∠ADO=90°
∴PE⊥AO;

(3)解:设AE=OC=3k,
∵AE=
3
8
AC,∴AC=8k,
∴OE=AC-AE-OC=2k,
∴OA=OE+AE=5k.
由(1)可知,AP=AO=5k.
如图,过点O作OD⊥AB于点D,
∵∠CBO=∠ABP,∴OD=OC=3k.
在Rt△AOD中,AD=
AO2-OD2
=
(5k)2-(3k)2
=4k.
∴BD=AB-AD=10-4k.
∵OD∥AP,
OD
AP
=
BD
AB
,即
3k
5k
=
10-4k
10

解得k=1,
∵AB=10,PE=AD,
∴PE=AD=4K,BD=AB-AD=10-4k=6,OD=3
在Rt△BDO中,由勾股定理得:
BO=
BD2+OD2
=
62+32
=3
5
点评:本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=3cm,⊙O的半径为
3
cm,则∠CDB的度数为(  )
A、45°B、30°
C、90°D、60°

查看答案和解析>>

科目:初中数学 来源: 题型:

直线y=
5
2
x+5与x轴、y轴交于A、B两点,过点C(-7,2)作CD⊥x轴于D,连CA.
(1)求证:AC=AB,且AC⊥AB;
(2)在y轴上取点E(0,3),连DE交AB于点P,求∠APD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

解不等式组:
x-2<0     ①
1-
x-1
2
≥0   ②

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是菱形,对角线AC和BD相交于O点,DH垂直且平分AB,BD=8cm,求:DH,AC的长和菱形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

分别画如图几何体的主视图、左视图、俯视图.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算下列各题
(1)2
3
+|
3
-2|-
364

(2)解不等式:2(x+3)-4>0,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,点A(1,2),B(2,1),C(4,3),
(1)在平面直角坐标系内找一点D,使A,B,C,D 四点构成一个平行四边形,请直接写出点D的坐标.答:点D的坐标为
 

(2)在x轴上找一点E、在y轴上找一点F,使A、B、E、F四点构成一个平行四边形,请画出符合题意的平行四边形,并写出E、F两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

去括号并合并同类项:x-(2x-y)=
 

查看答案和解析>>

同步练习册答案