Èçͼ£¬¶þ´Îº¯ÊýͼÏó¹ýµãM£¨2£¬0£©£¬Ö±ÏßABÓë¸Ã¶þ´Îº¯ÊýµÄͼÏó½»ÓÚA£¨0£¬2£©¡¢B£¨6£¬8£©Á½µã£®
£¨1£©Çó¸Ã¶þ´Îº¯ÊýµÄ½âÎöʽºÍÖ±ÏßABµÄ½âÎöʽ£»
£¨2£©PΪÏß¶ÎABÉÏÒ»¶¯µã£¨A¡¢BÁ½¶Ëµã³ýÍ⣩£¬¹ýP×÷xÖáµÄ´¹ÏßÓë¶þ´Îº¯ÊýµÄͼÏó½»ÓÚµãQ£¬ÉèÏß¶ÎPQµÄ³¤Îªl£¬µãPµÄºá×ø±êΪx£¬Çó³ölÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Ð´³ö×Ô±äÁ¿xµÄȡֵ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ïß¶ÎABÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹ËıßÐÎPQMAΪÌÝÐΣ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£¬²¢Çó³ö´ËʱÌÝÐÎPQMAµÄÃæ»ý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©Ö±½ÓÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽºÍ¶þ´Îº¯ÊýµÄ½âÎöʽ¼´¿É£»
£¨2£©PQµÄ³¤£¬Êµ¼ÊÊÇÖ±ÏßABµÄº¯ÊýÖµÓëÅ×ÎïÏߵĺ¯ÊýÖµµÄ²î£®¾Ý´Ë¿ÉµÃ³öl£¬xµÄº¯Êý¹ØÏµÊ½£®
£¨3£©ÒªÏëʹPQMAΪÌÝÐΣ¬Ö»ÓÐÒ»ÖÖÇé¿ö£¬¼´MQ¡ÎAP£¬¿É¸ù¾ÝÖ±ÏßABµÄбÂʺÍMµãµÄ×ø±êÇó³öÖ±ÏßMQµÄ½âÎöʽ£¬ÁªÁ¢Å×ÎïÏߵĽâÎöʽ¼´¿ÉÇó³öQµãµÄ×ø±ê£¬½«QµÄºá×ø±ê´úÈëÖ±ÏßABÖм´¿ÉÇó³öPµãµÄ×ø±ê£¬µÃ³öÈ»ºó¿É¸ù¾ÝA£¬M£¬Q£¬PµÄ×ø±êÇó³öAP£¬MQ£¬AMµÄ³¤£¬½ø¶ø¿ÉÇó³öÌÝÐÎAMQPµÄÃæ»ý£¨¿ÉÉèÖ±ÏßABÓëxÖáµÄ½»µãΪN£¬ÀûÓáÏANO=45¡ãÀ´Çó¸ö¸÷±ßµÄ³¤£©£®
½â´ð£º½â£º£¨1£©Éè¶þ´Îº¯ÊýµÄ½âÎöʽΪy=ax2+cx+d£¬
Ôò
d=2
4a+2c+d=0
36a+6c+d=8
£¬
½âµÃ£º
a=
1
2
c=-2
d=2
£¬
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪ£ºy=
1
2
£¨x-2£©2=
1
2
x2-2x+2£¬
ÉèÖ±ÏßABµÄ½âÎöʽµÄ½âÎöʽΪ£ºy=kx+b£¬
Ôò
b=2
6k+b=8
£¬
½âµÃ£º
k=1
b=2
£¬
¡àÖ±ÏßABµÄ½âÎöʽµÄ½âÎöʽΪ£ºy=x+6£»

£¨2£©ÉèPµã×ø±êΪ£ºP£¨x£¬y£©£¬ÔòQµã×ø±êΪ£¨x£¬
1
2
x2-2x+2£©
ÒÀÌâÒâµÃ£¬PQ=l=£¨x+2£©-
1
2
£¨x-2£©2=-
1
2
x2+3x£¬
ÓÉ
y=x+2
y=
1
2
(x-2)2
£¬
ÇóµÃµãBµÄ×ø±êΪ£¨6£¬8£©£¬
¡à0£¼x£¼6£»

£¨3£©ÓÉ£¨2£©ÖªPµÄºá×ø±êΪ0£¼x£¼6ʱ£¬±ØÓжÔÓ¦µÄµãQÔÚÅ×ÎïÏßÉÏ£»
·´Ö®£¬QµÄºá×ø±êΪ0£¼x£¼6ʱ£¬ÔÚÏß¶ÎABÉϱØÓÐÒ»µãPÓëÖ®¶ÔÓ¦£®
¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄµãP£¬ÓÉÌâÒâµÃAMÓëPQ²»»áƽÐУ¬
Òò´ËÌÝÐεÄÁ½µ×Ö»ÄÜÊÇAPÓëMQ£¬
¡ß¹ýµãM£¨2£¬0£©ÇÒÆ½ÐÐABµÄÖ±Ïß·½³ÌΪy=x-2£¬
ÓÉÓÉ
y=x+2
y=
1
2
(x-2)2
£¬
ÏûÈ¥yµÃ£ºx2-6x+8=0£¬¼´£¨x-2£©£¨x-4£©=0£¬
½âµÃx=2»òx=4£¬
¡ßµ±x=2ʱ£¬Pµã¡¢Qµã¡¢Mµã Èýµã¹²Ïߣ¬ÓëAµãÖ»Äܹ¹³ÉÈý½ÇÐΣ¬¶ø²»Äܹ¹³ÉÌÝÐΣ»
¡àx=2Õâ¸ö½âÉáÈ¥£®
¡à¹ýMµãµÄÖ±ÏßÓëÅ×ÎïÏßµÄÁíÒ»½»µãΪ£¨4£¬2£©£¬
¡ß´Ë½»µãºá×ø±ê4£¬ÂäÔÚ0£¼x£¼6·¶Î§ÄÚ£¬
¡àQµÄ×ø±êΪ£¨4£¬2£©Ê±£¬P£¨4£¬6£©·ûºÏÌõ¼þ£¬
¼´´æÔÚ·ûºÏÌõ¼þµÄµãP£¬Æä×ø±êΪ£¨4£¬6£©£¬
ÉèÖ±ÏßABÓëxÖá½»ÓÚN£¬ÓÉÌõ¼þ¿ÉÖª£¬¡÷ANMÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¼´AM=AN=2
2
£¬
AP=PN-AN=6
2
-2
2
=4
2
£¬MQ=2
2
£¬
AMΪÌÝÐÎPQMAµÄ¸ß£¬
¹ÊSÌÝÐÎPQMA=
1
2
£¨2
2
+4
2
£©¡Á2
2
=12£®
µãÆÀ£º±¾Ì⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢Í¼ÐεÄÃæ»ýÇ󷨡¢º¯ÊýͼÏ󽻵㡢ÌÝÐεÄÅж¨µÈ֪ʶ£¬ÅàÑøÑ§Éú×ÛºÏÓ¦ÓÃ֪ʶ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬¡÷ABCÖУ¬AB=AC£¬AD¡ÍBCÓÚµãD£¬µãEÔÚACÉÏ£¬CE=2AE£¬AD=9£¬BE=10£¬ADÓëBE½»ÓÚµãF£¬Ôò¡÷ABCµÄÃæ»ýÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µãE¡¢F·Ö±ðΪÕý·½ÐÎABCDÖÐAB¡¢BC±ßµÄÖе㣬Á¬½ÓAF¡¢DEÏཻÓÚµãG£¬Á¬½ÓCG£¬Ôòcos¡ÏCGD=£¨¡¡¡¡£©
A¡¢
1
2
B¡¢
3
2
C¡¢
2
5
5
D¡¢
5
5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾ÝлªÉ籨µÀ£¬½ØÖ¹3ÔÂ17ÈÕ£¬Âíº½ËѾȹ¤×÷ÒÑ·¢¶¯83156È˴Σ®ÆäÖÐ83156ÓÿÆÑ§¼ÇÊý·¨£¨±£ÁôÈý¸öÓÐЧÊý×Ö£©±íʾΪ£¨¡¡¡¡£©
A¡¢8.32¡Á104
B¡¢8.31¡Á104
C¡¢8.32¡Á102
D¡¢8.31¡Á102

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹¤µØÉÏÓмס¢ÒÒ¶þ¿éÌú°å£¬Ìú°å¼×ÐÎ״ΪµÈÑüÈý½ÇÐΣ¬Æä¶¥½ÇΪ45¡ã£¬Ñü³¤Îª12cm£»Ìú°åÒÒÐÎ״Ϊֱ½ÇÌÝÐΣ¬Á½µ×±ß³¤·Ö±ðΪ4cm¡¢10cm£¬ÇÒÓÐÒ»ÄÚ½ÇΪ60¡ã£®ÏÖÔÚÎÒÃǰÑËüÃÇÈÎÒⷭת£¬·Ö±ðÊÔͼ´ÓÒ»¸öÖ±¾¶Îª8.5cmµÄÔ²¶´Öд©¹ý£¬½á¹ûÊÇ£¨¡¡¡¡£©
A¡¢¼×°åÄÜ´©¹ý£¬ÒÒ°å²»ÄÜ´©¹ý
B¡¢¼×°å²»ÄÜ´©¹ý£¬ÒÒ°åÄÜ´©¹ý
C¡¢¼×¡¢ÒÒÁ½°å¶¼ÄÜ´©¹ý
D¡¢¼×¡¢ÒÒÁ½°å¶¼²»ÄÜ´©¹ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©¼ÆË㣺(
1
2
)2+(
7-
3
)0¡Á|cos60¡ã-1|
£»
£¨2£©½â·Öʽ·½³Ì£º
2
x+3
+
3
2
=
7
2x+6
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

´ÓÈý¸ö´úÊýʽ£º¢Ùa2-2ab+b2£¬¢Ú2a-2b£¬¢Ûa2-b2ÖÐÈÎÒâѡȡÁ½¸ö´úÊýʽ¹¹Ôì·Öʽ£¬È»ºó½øÐл¯¼ò£¬²¢Çóµ±a¡¢bΪ²»µÈʽ×é-1£¼2x-2£¼3ÕûÊý½â£¬ÇÒa£¾bʱµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Å×ÎïÏßy=-x2+bx+c¾­¹ýA£¨-1£¬0£©£¬C£¨0£¬4£©Á½µã£¬ÓëxÖá½»ÓÚÁíÒ»µãB£¬
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÇóPÔÚµÚÒ»ÏóÏÞµÄÅ×ÎïÏßÉÏ£¬PµãµÄºá×ø±êΪt£¬¹ýµãPÏòxÖá×ö´¹Ïß½»Ö±ÏßBCÓÚµãQ£¬ÉèÏß¶ÎPQµÄ³¤Îªm£¬ÇómÓëtÖ®¼äµÄº¯Êý¹ØÏµÊ½²¢Çó³ömµÄ×î´óÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Å×ÎïÏßÉÏÒ»µãDµÄ×Ý×ø±êΪmµÄ×î´óÖµ£¬Á¬½ÓBD£¬ÔÚÅ×ÎïÏßÊÇ·ñ´æÔÚµãE£¨²»ÓëµãA£¬B£¬CÖØºÏ£©Ê¹µÃ¡ÏDBE=45¡ã£¿Èô²»´æÔÚ£®Çë˵Ã÷ÀíÓÉ£»Èô´æÔÚÇëÇóEµãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µ±k·Ö±ðÈ¡-1£¬2£¬
2
ʱ£¬º¯Êýy=2xk2-2-£¨k+1£©x£¬ÔÚx¡Ý2ʱ£¬y¶¼ËæxµÄÔö´ó¶øÔö´óÂð£¿Çëд³öÄãµÄÅжϣ¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸