分析 根据等腰三角形的性质,由AB=AC得∠B=∠C,而∠ADE=∠B=α,则∠ADE=∠C,所以△ADE∽△ACD,于是可对①进行判断;作AH⊥BC于H,如图1,先证明△ABD∽△DCE,再利用余弦定义计算出BH=8,则BC=2BH=16,当BD=6时,可得AB=CD,则可判断△ABD≌△DCE,于是可对②进行判断;由于△DCE为直角三角形,分类讨论:当∠DEC=90°时,利用△ABD∽△DCE得到∠ADB=∠DEC=90°,即AD⊥BC,易得BD=8,当∠EDC=90°,如图2,利用△ABD∽△DCE得到∠DAB=∠EDC=90°,然后在Rt△ABD中,根据余弦的定义可计算出BD=$\frac{25}{2}$,于是可对③进行判断;由于∠BAD=∠CDE,而AD不是∠BAC的平分线,可判断∠CDE与∠DAC不一定相等,因此△CDE与△CAD不一定相似,这样得不到CD2=CE•CA,则可对④进行判断.
解答 解:∵AB=AC,
∴∠B=∠C,![]()
而∠ADE=∠B=α,
∴∠ADE=∠C,
而∠DAE=∠CAD,
∴△ADE∽△ACD,所以①正确;
作AH⊥BC于H,如图1,
∵∠ADC=∠B+∠BAD,
∴∠BAD=∠CDE,
而∠B=∠C,
∴△ABD∽△DCE,
∵AB=AC,
∴BH=CH,
在Rt△ABH中,∵cosB=cosα=$\frac{BH}{AB}$=$\frac{4}{5}$,
∴BH=$\frac{4}{5}$×10=8,![]()
∴BC=2BH=16,
当BD=6时,CD=10,
∴AB=CD,
∴△ABD≌△DCE,所以②正确;
当∠DEC=90°时,
∵△ABD∽△DCE,
∴∠ADB=∠DEC=90°,即AD⊥BC,
∴点D与点H重合,此时BD=8,
当∠EDC=90°,如图2,
∵△ABD∽△DCE,
∴∠DAB=∠EDC=90°,
在Rt△ABD中,cosB=cosα=$\frac{AB}{BD}$=$\frac{4}{5}$,
∴BD=$\frac{10}{\frac{4}{5}}$=$\frac{25}{2}$,
∴△DCE为直角三角形时,BD为8或$\frac{25}{2}$,所以③正确;
∵∠BAD=∠CDE,
而AD不是∠BAC的平分线,
∴∠CDE与∠DAC不一定相等,
∴△CDE与△CAD不一定相似,
∴CD2=CE•CA不成立,所以④错误.
故答案为①②③.
点评 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.也考查了解直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| x | -1 | 0 | 1 | 2 | 3 |
| y | 5 | 1 | -1 | -1 | 1 |
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com