精英家教网 > 初中数学 > 题目详情
(1)请在图1中作出两条直线,且它们将圆面四等分;
(2)如图2,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的年级分成相等的两部分?若存在,求出BQ的长;若不存在,请说明理由.
考点:作图—应用与设计作图
专题:
分析:(1)画出互相垂直的两直径即可;
(2)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.
解答:解:(1)如图所示:

(2)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,
理由是:如图③,连接BP并延长交CD的延长线于点E,
∵AB∥CD,
∴∠A=∠EDP,
在△ABP和△DEP中
∠A=∠EDP
AP=DP
∠APB=∠DPE

∴△ABP≌△DEP(ASA),
∴BP=EP,
连接CP,
∵△BPC的边BP和△EPC的边EP上的高相等,
又∵BP=EP,
∴S△BPC=S△EPC
作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,
由三角形面积公式得:PF=PG,
在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP
∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP
即:S四边形ABQP=S四边形CDPQ
∵BC=AB+CD=a+b,
∴BQ=b,
∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.
点评:本题考查了应用设计与作图以及图形面积求法等知识,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE,求证:BECF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB,CD相交于O,OE平分∠AOD,FO⊥CD于点O,∠1=
4
5
∠2,求∠EOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B,点C(-2,0).
(1)求S△ABC
(2)过点O作OD⊥BC交AB于D,求D点坐标;
(3)若直线y=kx-k与线段BD有交点,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算
(1)
64
×(-
1
2
)+(
6
2
(2)
27
-
12
-6
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

把大小和形状完全相同的6张卡片分成两组,每组3张,卡片上分别标有数字1,2,3,将这两组卡片分别放入两个盒子中搅匀,再从每个盒中各随机抽取1张.用画树状图(或列表)的方法求抽出的2张卡片上数字之和为奇数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,现有边长分别为a、b的正方形、邻边长为a和b(b>a)的长方形硬纸板若干.
(1)从这三种硬纸板中选择一些拼出面积为8ab的不同形状的长方形,则这些长方形的周长共有
 
种不同情况;
(2)请选择适当形状和数量的硬纸板,拼出面积为2a2+5ab+2b2的长方形,画出拼法的示意图;
(3)完成以上任务后,还剩下18块边长为a的正方形,14块边长为a、b的长方形,2块边长为b的正方形,需去掉其中一块后,才能拼出一个长方形.则应该去掉的一块四边形是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
(1)
x
x-1
-
2
x+1
=1;                 
(2)
x
x-1
-1=
3
(x+2)(x-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

当x=
 
时,代数式3x-5与1-2x的值互为相反数;当x=
 
时,代数式3x-5与1-2x的值相等;当x=
 
时,代数式3x-5与1-2x的值大4.

查看答案和解析>>

同步练习册答案