【题目】如图,在⊙O中,直径AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,求:
(1)BD的长;
(2)阴影部分的面积.
【答案】(1);(2)1
【解析】
(1)连接AD,由于AC是⊙O的切线,所以AB⊥AC,再根据∠C=45°可知AB=AC=2,由勾股定理可求出BC的长,由于AB是⊙O的直径,所以∠ADB=90°,故D是BC的中点,故可求出BD的长度;
(2)连接OD,因为O是AB的中点,D是BC的中点,所以OD是△ABC的中位线,所以OD⊥AB,故弧BD=弧AD,所以弧BD与弦BD组成的弓形的面积等于弧AD与弦AD组成的弓形的面积,所以S阴影=S△ABC-S△ABD,故可得出结理论.
解:(1)连接AD,
∵AC是⊙O的切线,
∴AB⊥AC,
∵∠C=45°,
∴AB=AC=2,
∴BC===2,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴D是BC的中点,
∴BD=BC=;
(2)连接OD,
∵O是AB的中点,D是BC的中点,
∴OD是△ABC的中位线,
∴OD=1,
∴OD⊥AB,
∴弧BD=弧AD,
∴弧BD与弦BD组成的弓形的面积等于弧AD与弦AD组成的弓形的面积,
∴S阴影=S△ABC﹣S△ABD=ABAC﹣ABOD=×2×2﹣×2×1=2﹣1=1.
科目:初中数学 来源: 题型:
【题目】有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)若用(m,n)表示小明取球时m与n 的对应值,用列表法(或画树状图)表示出(m,n)的所有取值;
(2)求关于x的一元二次方程有实数根的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给定关于x的二次函数y=kx2﹣4kx+3(k≠0),
(1)当该二次函数与x轴只有一个公共点时,求k的值;
(2)当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;
(3)由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:
①与y轴的交点不变;②对称轴不变;③一定经过两个定点;
请判断以上结论是否正确,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P, AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求证:BC=AB;
(3)点M是弧AB的中点,CM交AB于点N,若AB=8,求MN·MC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.
(1)求与的函数关系式(不要求写出自变量的取值范围);
(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;
(3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com