精英家教网 > 初中数学 > 题目详情

【题目】在求1+3+32+33+34+35+36+37+38的值时,李敏发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38

然后在①式的两边都乘3,得3S=3+32+33+34+35+36+37+38+39

①得,3S-S=39-1,即2S=39-1,

所以S=.

得出答案后,爱动脑筋的张红想:如果把“3”换成字母a(a≠0a≠1),能否求出1+a+a2+a3+a4+…+a2 017的值?如能求出,其正确答案是__________.

【答案】(a≠0且a≠1)

【解析】

根据题干所给方法,可假设:S=1+aa2a3a4+…+a2016,然后在式的两边都乘以a,得:aSaa2a3a4+…+a2017②,②-①得,aSSa2017-1,据此可求解出原式的值.

假设:S=1+aa2a3a4+…+a2016①,

aSaa2a3a4+…+a2017②,

②-①得,aS-S=S(a-1)=a2017-1,

则,S=(a≠0a≠1)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(阅读材料)“九宫图”源于我国古代夏禹时期的“洛书”1所示,是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”2所示

(规律总结)观察图1、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是______;若图3,是一个“幻方”,则______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣ x2+bx+4与x轴相交于A,B两点,与y轴相交于点C,若已知B点的坐标为B(8,0)

(1)求抛物线的解析式及其对称轴.
(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.
(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;
(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行于y轴的直尺(一部分)与双曲线y= (k≠0)(x>0)相交于点A、C,与x轴相交于点B、D,连接AC.已知点A、B的刻度分别为5,2(单位:cm),直尺的宽度为2cm,OB=2cm.

(1)求k的值;
(2)求经过A、C两点的直线的解析式;
(3)连接OA、OC,求△OAC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点ABCDE在同一直线上,且ACBDE是线段BC的中点.

(1)点E是线段AD的中点吗?说明理由;

(2)当AD=10,AB=3时,求线段BE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线AB上有一点P,点MN分别为线段PAPB的中点,AB=14.

(1)若点P在线段AB上,且AP=8,求线段MN的长度;

(2)若点P在直线AB上运动,设APxBPy,请分别计算下面情况时MN的长度:

①当PAB之间(含A或B);

②当PA左边;

③当PB右边;

你发现了什么规律?

(3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①的值不变;②的值不变,请选择一个正确的结论并求其值.

图1

,

图2

,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第1列第9行的数为______________,再根据第1行的偶数列的规律,写出第3行第6列的数为__________,判断2018所在的位置是第_______行,第_________.

查看答案和解析>>

同步练习册答案