【题目】如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展开后,得折痕AD、BE.(如图①),点O为其交点.如图②,若P、N分别为BE、BC上的动点.如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=_______.
【答案】
【解析】
如图,作点Q关于BC的对称点Q1,点D关于BE的对称点D1,连接D1Q1,交BE于P,BC于N,连接BQ1,QN、PD,由等边三角形的性质和轴对称的性质可得∠CBE=∠Q1BN=∠ABE=30°,BQ=BQ1,BD=BD1,PD=PD1,NQ=NQ1,即可得Q1D1是QN+NP+PD的最小值,可得△BQ1Q和△BD1D是等边三角形,根据∠CBE=∠Q1BN=∠ABE=30°,可得∠ABQ1=90°,由AD是折痕可得BD=BC,利用勾股定理求出Q1D1的长即可得答案.
如图,作点Q关于BC的对称点Q1,点D关于BE的对称点D1,连接D1Q1,交BE于P,BC于N,连接BQ1,QN、PD,
∵△ABC是等边三角形,AD、BE是折痕,
∴∠CBE=∠Q1BN=∠ABE=30°,点D1在AB上,BD=BC=3,∠ABC=60°,
∴∠ABQ1=90°,∠Q1BQ=60°,
∵点Q关于BC的对称点D1,点D关于BE的对称点D1,
∴BQ=BQ1,BD=BD1,PD=PD1,NQ=NQ1,
∴△BQ1Q和△BD1D是等边三角形,Q1D1是QN+NP+PD的最小值,
∴BQ1=BQ=1,BD1=BD=3,
∴Q1D1==.
故答案为:
科目:初中数学 来源: 题型:
【题目】如图,已知∠ADC=∠EFC,∠3=∠C,证明∠1=∠2的过程如下,请填上对应的理由.
解:∵∠ADC=∠EFC(已知),
∴AD∥EF(___________________________________).
∴∠1=∠4(__________________________________).
又∵∠3=∠C(已知),
∴AC∥DG(__________________________________).
∴∠2=∠4(_________________________________).
∴∠1=∠2(________________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨l元,则每个月少卖l0件(每件售价不能高于65元).设每件商品的售价上x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量戈的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为( )
A. π
B. π
C.6π
D. π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离( )cm.
A.14B.15C.16D.17
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知等边三角形ABC和等边三角形DBC有公共边BC,以图中某个点为旋转中心,旋转△DBC使它和△ABC重合,则旋转中心可以是________.(写出一个旋转中心即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】扬州市教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机调查了部分学生,并将他们一学期参加综合实践活动的天数进行统计,绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:
(1)参加调查的八年级学生总人数为_______人;
(2)根据图中信息,补全条形统计图;扇形统计图中“活动时间为4天”的扇形所对应的圆心角的度数为_______;
(3)如果全市共有八年级学生6000人,请你估计“活动时间不少于4天”的大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com