精英家教网 > 初中数学 > 题目详情

【题目】如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中: ①ab>0,②a+b+c>0,③当﹣2<x<0时,y<0.
正确的个数是(

A.0个
B.1个
C.2个
D.3个

【答案】D
【解析】解:①∵抛物线的开口向上, ∴a>0,
∵对称轴在y轴的左侧,
∴b>0
∴ab>0;故①正确;②∵观察图象知;当x=1时y=a+b+c>0,
∴②正确;③∵抛物线的对称轴为x=﹣1,与x轴交于(0,0),
∴另一个交点为(﹣2,0),
∴当﹣2<x<0时,y<0;故③正确;
故选D.
【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.

探究1:如图l,在ABC中,O是∠ABC与∠ACB的平分线BOCO的交点,通过分析发现∠BOC=90+A,理由如下:

BOCO分别是∠ABC和∠ACB的角平分线

∴∠1=ABC, 2=ACB

∴∠l+2=(ABC+ACB)= (180-A)= 90-A

∴∠BOC=180-(1+2) =180-(90-A)=90+A

(1)探究2;如图2中,OABC与外角ACD的平分线BOCO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.

(2)探究3:如图3中, O是外角∠DBC与外角∠ECB的平分线BOCO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)

(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BOCO的交点,则∠BOC与∠A+D有怎样的关系?(直接写出结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1=2CFABDEAB,求证:FGBC.

证明:CFABDEAB 已知

∴∠BED=90°BFC=90°

∴∠BED=BFC ( )

EDFC

∴∠1=BCF ( )

∵∠2=1 已知

∴∠2=BCF ( )

FGBC ( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列等式:①由a=b,得52a=52b②由a=b,得ac=bc③由a=b,得④由,得3a=2b

⑤由a2=b2,得a=b.其中正确的是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知多项式ax5+bx3+3x+c,当x=0时,该代数式的值为﹣1.

(1)求c的值;

(2)已知当x=3时,该式子的值为9,试求当x=﹣3时该式子的值;

(3)在第(2)小题的已知条件下,若有3a=5b成立,试比较a+bc的大小?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1 , 得∠A1;∠A1BC和∠A1CD的平分线交于点A2 , 得∠A2;…∠A2016BC和∠A20l6CD的平分线交于点A2017 , 则∠A2017=°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一张平行四边形纸片ABCD,要求利用所学知识将它变成一个菱形,甲、乙两位同学的作法分别如下:

对于甲、乙两人的作法,可判断(  )

A. 甲正确,乙错误 B. 甲错误,乙正确

C. 甲、乙均正确 D. 甲、乙均错误

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的面积为18,点D在线段AC上,点F在线段BC的延长线上,且,四边形DCFE是平行四边形,则图中阴影部分的面积为

A. 8 B. 6 C. 4 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,BCAD不平行,且BAD+ADC=270°EF分别是ADBC的中点,已知EF=4,求AB2+CD2的值.

查看答案和解析>>

同步练习册答案