精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD是⊙O的内接正方形,延长BAE,使AE=AB,连接ED


1)求证:直线ED是⊙O的切线;
2)连接EOAD于点F,求证:EF=2FO

【答案】1)见解析;(2)见解析

【解析】试题分析:(1)连接OD,只需证明ODDE.根据正方形的性质得到AE=AD,则∠ADE=45°.又∠ADO=45°则证明了结论;
2)作OMABM.根据平行线分线段成比例定理进行证明.

试题解析:证明:(1)连接OD

∵四边形ABCD为正方形,AE=AB

AE=AB=ADEAD=DAB=90°

∴∠EDA=45°ODA=45°

∴∠ODE=ADE+ODA=90°

∴直线ED是⊙O的切线.

2)作OMABM

O为正方形的中心,

MAB中点,

AE=AB=2AMAFOM

EF=2FO

2)作OMABM.根据平行线分线段成比例定理进行证明.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,EFGH依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为678四边形DHOG面积为( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学报名参加校运动会,有以下5个项目可供选择:

径赛项目:100m,200m,400m(分别用A1A2A3表示);

田赛项目:跳远,跳高(分别用B1B2表示).

(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为________;

(2)该同学从5个项目中任选两个,利用树状图或列表列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形,回答下列问题.

(1)图中格点A′B′C′是由格点ABC通过怎样的变换得到的?

(2)如果以直线a、b为坐标轴建立平面直角坐标系后,点A的坐标为(﹣3,4),请写出格点DEF各顶点的坐标,并求出DEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠1∠2,则不一定能使△ABD≌△ACD的条件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉兴市2010~2014年社会消费品零售总额及增速统计图如下

请根据图中信息,解答下列问题:

(1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.

(2)求嘉兴市近三年(2012~2014)的社会消费品零售总额这组数据的平均数.

(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图象经过P-2·3).

(1)求此反比例函数的解析式;

(2)A(2-3)B(32)是否在这个函数的图象上?

(3)这个函数的图象位于哪些象限?函数值y随自变量x的减小如何变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数ya(x1)22的图象的一部分,根据图象回答下列问题:

(1)抛物线与x轴的一个交点A的坐标是 ,则抛物线与x轴的另一个交点B的坐标是

(2)确定a的值;

(3)设抛物线的顶点是P,试求△PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,然后解决问题:

截长法与补短法在证明线段的和、差、倍、分等问题中有着广泛的应用具体的做法是在某条线段上截取一条线段等于某特定线段,或将某条线段延长,使之与某特定线段相等,再利用全等三角形的性质等有关知识来解决数学问题

(1)如图①,在△ABC中,若AB12AC8,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DEAD,再连接BEABAC2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是

(2)问题解决:

如图②,在△ABC中,DBC边上的中点,DEDF于点DDEAB于点EDFAC于点F,连接EF,求证:BECFEF

(3)问题拓展:

如图③,在四边形ABCD中,∠BD180°CBCDBCD=140°,以C为顶点作一个70°角,角的两边分别交ABADEF两点,连接EF,探索线段BEDFEF之间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案