【题目】(1)如图(1),在△ABC中,AB>AC>BC,∠ACB=80°,点D、E分别在线段BA、AB的延长线上,且AD=AC,BE=BC,则∠DCE= ;
(2)如图(2),在△ABC中,AB>AC>BC,∠ACB=80°,点D、E分别在边AB上,且AD=AC,BE=BC,求∠DCE的度数;
(3)在△ABC中,AB>AC>BC,∠ACB=80°,点D、E分别在直线AB上,且AD=AC,BE=BC,则∠求DCE的度数(直接写出答案);
(4)如图(3),在△ABC中,AB=14,AC=15,BC=13,点D、E在直线AB上,且AD=AC,BE=BC.请根据题意把图形补画完整,并在图形的下方直接写出△DCE的面积.(如果有多种情况,图形不够用请自己画出,各种情况用一个图形单独表示).
【答案】(1)、130°;(2)、50°;(3)、40°;(4)、252或84或96或72.
【解析】
试题分析:(1)、根据等腰三角形的性质得到∠ACD=∠D,∠BCE=∠E,由三角形的内角和得到∠CAB+∠CBA=100°,根据三角形的外角的性质得到∠CDA+∠BCE=(∠CAB+∠CBA)=50°,即可得到结论;
(2)、根据三角形的内角和和外角的性质即可得到结论;(3)、点D、E分别在直线AB上,除去(1)(2)两种情况,还有两种情况,如图3,由(1)知,∠D=CAB,由(2)知∠CEB=,列方程即可求得结果.(4)在△ABC中,AB=14,AC=15,BC=13,过C作CF⊥AB与F,根据勾股定理求得AB边上的高CF=12,然后根据三角形的面积公式即可强大的结论.
试题解析:(1)、∵AD=AC,BE=BC, ∴∠ACD=∠D,∠BCE=∠E, ∵∠ACB=80°,
∴∠CAB+∠CBA=100°, ∴∠CDA+∠BCE=(∠CAB+∠CBA)=50°, ∴∠DCE=130°,
(2)、∵∠ACB=80°, ∴∠A+∠B=100°, ∵AD=AC,BE=BC, ∴∠ACD=∠ADC,∠BEC=∠BCE,
∴∠ADC=,∠BEC=, ∴∠ADC+∠BEC=180°﹣(∠A+∠B)=130°,∴∠DCE=50°;
(3)、点D、E分别在直线AB上,除去(1)(2)两种情况,还有两种情况,如图3,
由(1)知,∠D=CAB,由(2)知∠CEB=, ∴∠CEB=∠D+∠DCE,
∴=CAB+∠DCE, ∴∠DCE=40°, 如图4,同理∠DCE=40°;
(4)、在△ABC中,AB=14,AC=15,BC=13, 过C作CF⊥AB与F,
(5)则AC2﹣AF2=BC2﹣BF2,即152﹣AF2=132﹣(14﹣AF)2, 解得:AF=9, ∴CF=12,
①如图1,DE=AB+AC+BC=42, ∴S△CDE=×42×12=252;
②如图2,DE=AC+BC﹣AB=14, ∴S△CDE=×14×12=84;
③如图3,DE=AC+AB﹣BC=16, ∴S△CDE=×16×12=96;
④如图4,DE=AB+BC﹣AC=12,/span> ∴S△CDE=×12×12=72.
科目:初中数学 来源: 题型:
【题目】已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为( )
A. (-3,5),(-6,3)
B. (5,-3),(3,-6)
C. (-6,3),(-3,5)
D. (3,-6),(5,-3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】a,b,c是实数,点A(a+1,b),B(a+2,c)在二次函数y=x2-2ax+3的图象上,则b,c的大小关系是b_____c.(用“>”或“<”填空)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点,并且∠BMC=60°.
(1)求证:AB是⊙O的切线;
(2)若E,F分别是边AB,AC上的两个动点,且∠EDF=120°,⊙O的半径为2,试问BE+CF的值是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有( )
A. 50人 B. 64人 C. 90人 D. 96人
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,⊙O的半径为3,的长为π.
(1)直线CD与⊙O相切吗?说明理由。
(2)求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是( )
A. (-5,3) B. (-5,-3)
C. (5,3)或(-5,3) D. (-5,3)或(-5,-3)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com