分析 (1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;
(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直;
(3)由平行线的性质得到∠ADG=∠DGC,根据∠GDF=∠ADF,∠GDF=30°,利用直角三角形性质得到结论.
解答 (1)证明:∵AD∥BC,
∴∠ADE=∠BFE,
∵E为AB的中点,
∴AE=BE,
在△ADE和△BFE中,
$\left\{\begin{array}{l}{∠ADE=∠BFE}\\{∠AED=∠BEF}\\{AE=BE}\end{array}\right.$,
∴△ADE≌△BFE(AAS);![]()
(2)解:EG与DF的位置关系是EG垂直平分DF,
理由为:连接EG,
∵∠GDF=∠ADE,∠ADE=∠BFE,
∴∠GDF=∠BFE,
由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,
∴GE垂直平分DF.
(3)解:∵AD∥BC,∠DGC=60°,
∴∠ADG=∠DGC=60°,
∵∠GDF=∠ADF,
∴∠GDF=30°,
由(2)知:EG⊥DF,
在Rt△GED中
EG=$\frac{1}{2}$DG=$\frac{1}{2}$×6=3cm.
点评 此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com