精英家教网 > 初中数学 > 题目详情
已知:如图,AB是⊙O的直径,CD是⊙O的一条非直径的弦,且ABCD,连接AD和BC,
(1)AD和BC相等吗?为什么?
(2)如果AB=2AD=4,且A、B、C、D四点在同一抛物线上,请在图中建立适当的直角坐标系,求出该抛物线的解析式.
(3)在(2)中所求抛物线上是否存在点P,使得S△PAB=
1
2
S四边形ABCD?若存在,求出P的坐标;若不存在,说明理由.
(1)AD=BC.
理由如下:∵ABCD,
AD
=
BC

∴AD=BC;

(2)如图,建立平面直角坐标系,∵AB=2AD=4,
∴AO=BO=2,
∴点A、B的坐标分别为A(-2,0),B(2,0),
连接OD,过点D作DE⊥AO于点E,
则OD=AO=2,
∴△AOD是等边三角形,
OE=
1
2
AO=
1
2
×2=1,
DE=
OD2-OE2
=
22-12
=
3

∴点D的坐标为(-1,
3
),
设过A、B、C、D四点的抛物线解析式为y=ax2+bx+c,
4a-2b+c=0
4a+2b+c=0
a-b+c=
3

解得
a=-
3
3
b=0
c=
4
3
3

所以,该抛物线的解析式为y=-
3
3
x2+
4
3
3


(3)存在.理由如下:
由对称性可得CD=2OE=2×1=2,
∴S四边形ABCD=
1
2
×(2+4)×
3
=3
3

设点P到AB的距离为h,∵S△PAB=
1
2
S四边形ABCD
1
2
×4•h=
1
2
×3
3

解得h=
3
3
4

①当点P在x轴上方时,点P的纵坐标为
3
3
4

所以,-
3
3
x2+
4
3
3
=
3
3
4

解得x=±
7
2

此时,点P的坐标为(-
7
2
3
3
4
)或(
7
2
3
3
4
),
②当点P在x轴下方时,点P的纵坐标为-
3
3
4

所以,-
3
3
x2+
4
3
3
=-
3
3
4

解得x=±
5
2

此时,点P的坐标为(-
5
2
,-
3
3
4
)或(
5
2
,-
3
3
4
),
综上所述,抛物线上存在点P(-
7
2
3
3
4
)或(
7
2
3
3
4
)或(-
5
2
,-
3
3
4
)或(
5
2
,-
3
3
4
),使得S△PAB=
1
2
S四边形ABCD
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-
3
),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1.
(1)求该二次函数的解析式;
(2)点D为直线BC下方的二次函数图象上的一个动点(点D与B、C不重合),过点D作y轴的平行线交BC于点E,设点D的横坐标为m,DE=n,n与m的函数关系式;
(3)点M在y轴上,点N在抛物线上.是否存在以M、N、A、B四点为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

用“?”定义一种新运算:对于任意实数m,n和抛物线y=-ax2,当y=ax2?(m,n)后都可以得到y=a(x-m)2+n.例如:当y=2x2?(3,4)后都可以得到y=2(x-3)2+4.若函数y=x2?(1,n)得到的函数如图所示,则n=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴交于(1,0)(5,0)两点,若一个动点P自OA的中点M出发,先到达x轴上的某点E,再到达抛物线的对称轴上某点F,最后运动到点A,则使点P运动的总路径最短的点E、点F的坐标分别是:E______,F______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:一次函数y=-
1
2
x+2
的图象与x轴、y轴的交点分别为B、C,二次函数的关系式为y=ax2-3ax-4a(a<0).
(1)说明:二次函数的图象过B点,并求出二次函数的图象与x轴的另一个交点A的坐标;
(2)若二次函数图象的顶点,在一次函数图象的下方,求a的取值范围;
(3)若二次函数的图象过点C,则在此二次函数的图象上是否存在点D,使得△ABD是直角三角形?若存在,求出所有满足条件的点D坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+2经过点A(-1,0),B(5,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)点P为线段AB上一点,连接PC.将线段PC绕点P顺时针旋转90°得到线段PF,连接BF.设点P的坐标为(t,0),△PBF的面积为S,求S与t的函数关系式,并求出当△PBF的面积最大时,点P的坐标及此时△PBF的最大面积;
(3)在(2)的条件下,点P在线段OB上移动的过程中,△PBF能否成为等腰三角形?若能,求出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
3
4
x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=
3
4t
x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.
(1)填空:点C的坐标是______,b=______,c=______;
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,桥拱是抛物线形,其函数的表达式为y=-
1
4
x2
,当水位线在AB位置时,水面宽12m,这时水面离桥顶的高度为(  )
A.3mB.2
6
m
C.4
3
m
D.9m

查看答案和解析>>

同步练习册答案