精英家教网 > 初中数学 > 题目详情
12.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
(1)试说明DF是⊙O的切线;
(2)若AC=3AE,求tanC.

分析 (1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;
(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2$\sqrt{2}$AE,CE=4AE,然后在RT△BEC中,即可求得tanC的值.

解答 (1)证明:连接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)解:连接BE,
∵AB是直径,
∴∠AEB=90°,
∵AB=AC,AC=3AE,
∴AB=3AE,CE=4AE,
∴BE=$\sqrt{A{B}^{2}-A{E}^{2}}$=2$\sqrt{2}$AE,
在RT△BEC中,tanC=$\frac{BE}{CE}$=$\frac{2\sqrt{2}AE}{4AE}$=$\frac{\sqrt{2}}{2}$.

点评 本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定,勾股定理的应用以及直角三角函数等,是一道综合题,难度中等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

2.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为(  )
A.20%B.40%C.-220%D.30%

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数y=$\frac{12}{x}$图象上的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是(  )
A.1对B.2对C.3对D.4对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为4.8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-$\sqrt{5}$的点P应落在线段(  )
A.AO上B.OB上C.BC上D.CD上

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,$\sqrt{3}$≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=50°;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解方程
(1)2x-1=x+3
(2)0.5x-0.7=6.5-1.3x
(3)2x+3(2x-1)=16-(x+1)
(4)$\frac{x-3}{2}-\frac{4x+1}{5}=1$.

查看答案和解析>>

同步练习册答案