精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD中,AB=2,C=60°,我们把菱形ABCD的对称中心O称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为 ;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为 .(结果都保留π

【答案】nπ

【解析】

试题分析:从图中可以看出,第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60°.第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60°.第三次就是以点B为旋转中心,OB为半径,旋转的圆心角为60度.旋转到此菱形就又回到了原图.故这样旋转3n次,就是这样的n个弧长的总长,依此计算即可得,进而得出经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是( )

A1B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

问题探究:不妨假设能搭成种不同的等腰三角形,为探究之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.

探究一:

1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

此时,显然能搭成一种等腰三角形。所以,当时,

2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形

所以,当时,

3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形

所以,当时,

4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?

若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形

若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形

所以,当时,

综上所述,可得表


3

4]

5

6


1

0

1

1

探究二:

1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?

(仿照上述探究方法,写出解答过程,并把结果填在表中)

2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三

角形?(只需把结果填在表中)


7

8

9

10






你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……

解决问题:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?

(设分别等于,其中是整数,把结果填在表中)











问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒。(只填结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BCCD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t秒,APQ的面积为S,则表示S与t之间的函数关系的图象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中.过一点分別作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如.图中过点P分別作x轴,y轴的垂线.与坐标轴围成矩形OAPB的周长的数值与面积的数值相等,则点P是和谐点.

(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;

(2)若和谐点P(a,3)在直线y=﹣x+b(b为常数)上,求a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BAC=90°,AB=AC,D是BC上的点.求证:BD2+CD2=2AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2010年5月1日至2010年10月31日期间在上海举行的世界博览会总投资约450亿元人民币,其中“450亿”用科学记数法表示为( )元.
A.4.5×1010
B.4.5×109
C.4.5×108
D.0.45×109

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知|ab﹣2|+(b﹣1)2=0
(1)求a,b的值;
(2)求b2004+(﹣b)2005的值;
(3)求 + + +…+ 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+4顶点在x轴上,则b=

查看答案和解析>>

同步练习册答案