精英家教网 > 初中数学 > 题目详情

【题目】如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF
(1)求证:△EBF≌△DFC;
(2)求证:四边形AEFD是平行四边形;
(3)①△ABC满足时,四边形AEFD是菱形.(无需证明) ②△ABC满足时,四边形AEFD是矩形.(无需证明)
③△ABC满足时,四边形AEFD是正方形.(无需证明)

【答案】
(1)证明:∵△ABE、△BCF为等边三角形,

∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,

∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,

在△ABC和△EBF中,

∴△ABC≌△EBF(SAS),

∴EF=AC,

又∵△ADC为等边三角形,

∴CD=AD=AC,

∴EF=AD=DC,

同理可得△ABC≌△DFC,

∴DF=AB=AE=DF,

∴四边形AEFD是平行四边形;

∴∠FEA=∠ADF,

∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,

在△FEB和△CDF中,

∴△EBF≌△DFC(SAS)


(2)证明:∵△EBF≌△DFC,

∴EB=DF,EF=DC.

∵△ACD和△ABE为等边三角形,

∴AD=DC,AE=BE,

∴AD=EF,AE=DF

∴四边形AEFD是平行四边形


(3)AB=AC;∠BAC=150°;AB=AC,∠BAC=150°
【解析】(3)①若AB=AC,则平行四边形AEFD是菱形; 此时AE=AB=AC=AD,即△ABC是等腰三角形;
故△ABC满足AB=AC时,四边形AEFD是菱形;
②若∠BAC=150°,则平行四边形AEFD是矩形;
由(1)知四边形AEFD是平行四边形,则∠EAD=90°时,可得平行四边形AEFD是矩形,
∴∠BAC=360°﹣60°﹣60°﹣90°=150°,
即△ABC满足∠BAC=150°时,四边形AEFD是矩形;
③综合①②的结论知:当△ABC是顶角∠BAC是150°的等腰三角形时,四边形AEFD是正方形.
故答案是:①AB=AC;
②∠BAC=150°;
③AB=AC,∠BAC=150°.

(1)由△ABE与△BCF都为等边三角形,利用等边三角形的性质得到两对边相等,∠ABE=∠CBF=60°,利用等式的性质得到夹角相等,利用SAS得到△EBF与△DFC全等;(2)利用(1)中全等三角形对应边相等得到EF=AC,再由三角形ADC为等边三角形得到三边相等,等量代换得到EF=AD,AE=DF,利用对边相等的四边形为平行四边形得到AEFD为平行四边形;(3)①当AE=AD时,ADFE是菱形;②当∠BAC=150°,由此可求得∠EAD的度数,则可得ADFE是矩形;③当ADFE是正方形时,∠EAD=90°,且AE=AD,联立①②的结论即可.
【考点精析】通过灵活运用等边三角形的性质和平行四边形的判定与性质,掌握等边三角形的三个角都相等并且每个角都是60°;若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1如图1已知O是直线CD上的点OA平分BOCOE平分BODAOC=35°BOECOE的度数

2)如图2已知AB=16cmCAB上一点D是线段AC的中点E是线段BC的中点求线段DE的长度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a、b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】知识的迁移与应用

问题一:甲、乙两车分别从相距180km的 AB两地出发,甲车速度为36 km/h,乙车速度为24km/h,两车同时出发,相向而行   后两车相距120 km?

问题二:将线段弯曲后可视作钟表的一部分,如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.

(1)3:40时,时针与分针所成的角度  

(2)分针每分钟转过的角度为  时针每分钟转过的角度为  

(3)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P从点A出发,以1cm/s的速度向点D运动;动点Q从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:
(1)当t为何值时,PQ∥CD?
(2)当t为何值时,PQ=CD?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个四边形的一条对角线把四边形分成两个等腰三角形,且其中一个等腰三角形的底角是另一个等腰三角形底角的2倍,我们把这条对角线叫做这个四边形的黄金线,这个四边形叫做黄金四边形.

(1)如图1,在四边形ABCD中,AB=AD=DC,对角线AC,BD都是黄金线,且AB<AC,CD<BD,求四边形ABCD各个内角的度数;

(2)如图2,点B是弧AC的中点,请在⊙O上找出所有的点D,使四边形ABCD的对角线AC是黄金线(要求:保留作图痕迹);

(3)在黄金四边形ABCD中,AB=BC=CD,∠BAC=30°,求∠BAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》中注有“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”规定向东为正,向西为负.若向东走70m,记作+70m,则﹣20m表示(  )

A.向西走20mB.向东走20mC.向西走50mD.向东走50m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCD纸片,A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( )

A. 12 B. 15 C. 16 D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】角平分线性质定理的逆定理:角的内部,到_________________的点,在这个角的平分线上.

查看答案和解析>>

同步练习册答案