【题目】如图,△ABC中,⊙O经过A、B两点,且交AC于点D,连接BD,∠DBC=∠BAC.
(1)证明BC与⊙O相切;
(2)若⊙O的半径为6,∠BAC=30°,求图中阴影部分的面积.
【答案】(1)证明见解析;(2)6π-9.
【解析】
(1)连接BO并延长交⊙O于点E,连接DE.由圆周角定理得出∠BDE=90°,再求出∠EBD+∠DBC=90°,根据切线的判定定理即可得出BC是⊙O的切线;
(2)分别求出等边三角形DOB的面积和扇形DOB的面积,即可求出答案.
(1)证明:连接BO并延长交⊙O于点E,连接DE,
∵BE是直径,∴∠EDB=90°,
∴∠E+∠EBD=90°
∵=,∴∠E=∠A
又∵∠DBC=∠BAC,∴∠DBC=∠E
∴∠DBC+∠EBD=90°,∴∠EBC=90°,∴BC⊥EB.
又∵OB是半径(B在⊙O上),∴BC与⊙O相切.
(2)∵=,∴∠BOD=2∠A=60°
S阴影= S扇形OBD-S△OBD=π36×-9=6π-9.
科目:初中数学 来源: 题型:
【题目】若一个四位自然数n满足千位与个位相同,百位与十位相同,我们称这个数为“天平数”.将“天平数”n的前两位与后两位交换位置得到一个新的“天平数”n′,记F(n)=,例如n=2112,n′=1221,F(2112)==9
(1)计算F(5335)= ;若“天平数”n满足F(n)是一个完全平方数,求F(n)的值;
(2)s、t“天平数“,其中s=,t=(1≤b<a≤9,1≤x<y≤9且a,b, xy为整数),若F(s)能被8整除,且F(s)+F(t)﹣9(y+1)=0,规定:K(s,t)=,求K(s,t)的所有结果的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米/分;②m的值是15,n的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米.其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x-3与坐标轴交于A、B两点,抛物线经过点B,与直线y=x-3交于点E(8,5),且与x轴交于C,D两点.
(1)求抛物线的解析式;
(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;
(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮从家出发步行到公交站台后,等公交车去学校,如图, 折线表示这个过程中行程 s (千米)与所花时间 t (分)之间的关系,下 列说法错误的是( )
A.他家到公交车站台需行 1 千米B.他等公交车的时间为 4 分钟
C.公交车的速度是 500 米/分D.他步行与乘公交车行驶的平均速度300米/分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于C,OC平分∠AOB.
(1)求∠AOB的度数;
(2)若线段CD的长为2cm,求的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,两个完全相同的三角形纸片和重合放置,其中,.
(1)操作发现:如图2,固定,使绕点旋转,当点恰好落在边上时,填空:①线段与的位置关系是________;②设的面积为,的面积为,则与的数量关系是_____.
(2)猜想论证:当绕点旋转到如图3所示的位置时,请猜想(1)中与的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)拓展探究:已知,平分,,,交于点(如图4).若在射线上存在点,使,请求相应的的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.
(1)求证:△ABE∽△ECM;
(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;
(3)当线段BE为何值时,线段AM最短,最短是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com