【题目】综合与实践:
如图1,中,,于点,且;如图2,在图1的基础上,动点从点出发以每秒的速度沿线段向点运动,同时动点从点出发以相同速度沿线段向点运动,当其中一点到达终点时另外一点也随之停止运动,设点运动的时间为秒.
(1)求的长;
(2)当的其中一边与平行时(与不重合),求的值;
(3)点在线段上运动的过程中,是否存在以为腰的是等腰三角形?若存在,求出的值;若不存在,请说明理由.
【答案】(1);(2)的值为2.5秒或3秒;(3)存在,的值为3或秒.
【解析】
(1)设,,则,在Rt△ABD中利用勾股定理建立方程求出x,即可得到AB的长;
(2)分两种情况讨论:①当时,;②当时,,分别建立方程求解;
(3)分两种情况讨论:①当时,易得;②当时,过点作于点,利用等积法求出DE,再用勾股定理求出AE,进而得到AP,用距离除以速度即可得出时间.
解:(1)设,,则.
∵,
∴,
在中,,
即,
解得,
∴.
(2)由(1)可得:,,,
∵动点、以每秒的速度运动,时间为,
∴,,
①当时,,
即,
∴;
②当时,,
即,
∴.
∴当的其中一边与平行时,的值为2.5秒或3秒.
(3)存在,分两种情况讨论:
①如图,当时,是等腰三角形.
∴,
∴,
②如图,当时,是等腰三角形.
过点作于点,
在中,,
即:,
∴,
在中,.
∴,
∴.
综上,当的值为3或秒时,是以为腰的等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于点A、点B,直线CD与x轴、y轴分别交于点C、点D,AB与CD相交于点E,线段OA、OC的长是一元二次方程x2﹣18x+72=0的两根(OA>OC),BE=5,OB=OA.
(1)求点A、点C的坐标;
(2)求直线CD的解析式;
(3)在x轴上是否存在点P,使点C、点E、点P为顶点的三角形与△DCO相似?若存在,请求出点P的坐标;如不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线与双曲线的一个交点是.
(1)求的值;
(2)设点是双曲线上不同于的一点,直线与轴交于点.
①若,求的值;
②若,结合图象,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某书店参加某校读书活动,并为每班准备了A,B两套名著,赠予各班甲、乙两名优秀读者,以资鼓励.某班决定采用游戏方式发放,其规则如下:将三张除了数字2,5,6不同外其余均相同的扑克牌,数字朝下随机平铺于桌面,从中任取2张,若牌面数字之和为偶数,则甲获A名著;若牌面数字之和为奇数,则乙获得A名著,你认为此规则合理吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知P是⊙O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有动点A、B(不与P,Q重合),连接AP、BP. 若∠APQ=∠BPQ.
(1)如图1,当∠APQ=45°,AP=1,BP=2时,求⊙O的半径;
(2)如图2,选接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,若∠NOP+2∠OPN=90°,探究直线AB与ON的位置关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面
的最大距离是5m.
(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如下图)
你选择的方案是_____(填方案一,方案二,或方案三),则B点坐标是______,求出你所选方案中的抛物线的表达式;
(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为,则k的值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com