Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¡ÑOÊÇÒÔÔ­µãOΪԲÐÄ£¬°ë¾¶Îª2µÄÔ²£¬PÊÇÔÚµÚÒ»ÏóÏÞÄÚ£¬¡ÑOÉÏÒ»¶¯µã£¬¹ýµãP×÷¡ÑOµÄÇÐÏß·Ö±ðÓëx£¬yÖáÏཻÓÚµãA¡¢B£®
£¨1£©µ±µãPΪABÖеãʱ£¬ÇëÖ±½Óд³öPµã×ø±ê£»
£¨2£©µãPÔÚÔ˶¯Ê±£¬Ïß¶ÎABµÄ³¤¶ÈÒ²ÔÚ·¢Éú±ä»¯£¬ÇëÇóÏß¶ÎABµÄ×îСֵ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÔÚ¡ÑOÉÏÊÇ·ñ´æÔÚÒ»µãQ£¬Ê¹µÃÒÔQ¡¢O¡¢A¡¢PΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öQµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÔ²µÄ×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©ÀûÓÃÇÐÏßµÄÐÔÖʺ͵ãPΪABµÄÖеã¿ÉÒԵõ½OP´¹Ö±Æ½·ÖAB£¬´Ó¶øÇóµÃµãPµÄ×ø±ê£»
£¨2£©Èçͼ£¬ÉèABµÄÖеãΪC£¬Á¬½ÓOP£¬ÓÉÓÚABÊÇÔ²µÄÇÐÏߣ¬¹Ê¡÷OPCÊÇÖ±½ÇÈý½ÇÐΣ¬ËùÒÔµ±OCÓëOPÖØºÏʱ£¬OC×î¶Ì£»
£¨3£©·ÖÁ½ÖÖÇé¿ö£ºÈçͼ£¨1£©£¬µ±ËıßÐÎAPOQÊÇÕý·½ÐÎʱ£¬¡÷OPA£¬¡÷OAQ¶¼ÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¿ÉÇóµÃµãQµÄ×ø±êΪ£¨
2
£¬-
2
£©£¬Èçͼ£¨2£©£¬¿ÉÇóµÃ¡ÏQOP=¡ÏOPA=90¡ã£¬ÓÉÓÚOP=OQ£¬¹Ê¡÷OPQÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¿ÉÇóµÃµãQµÄ×ø±êΪ£¨-
2
£¬
2
£©£®
½â´ð£º½â£º£¨1£©Èçͼ£¬×÷PM¡ÍOAÓÚµãM£¬
¡ßµãPΪABÖе㣬ABÇСÑOÓÚµãP£¬
¡à¡ÏPOM=45¡ã£¬
¡ßPO=2
¡àPM=OM=
2
£¬
¡àµãPµÄ×ø±êΪ£º£¨
2
£¬
2
£©

£¨2£©Ïß¶ÎAB³¤¶ÈµÄ×îСֵΪ4£¬
ÀíÓÉÈçÏ£º
Èçͼ1Á¬½ÓOP£¬
¡ßABÇСÑOÓÚP£¬
¡àOP¡ÍAB£¬
È¡ABµÄÖеãC£¬
ÔòAB=2OC£»
µ±OC=OPʱ£¬OC×î¶Ì£¬
¼´AB×î¶Ì£¬
´ËʱAB=4£»

£¨3£©Éè´æÔÚ·ûºÏÌõ¼þµÄµãQ£¬
Èçͼ3£¬ÉèËıßÐÎAPOQΪƽÐÐËıßÐΣ»
¡ß¡ÏAPO=90¡ã£¬
¡àËıßÐÎAPOQΪ¾ØÐΣ¬
ÓÖ¡ßOP=OQ£¬
¡àËıßÐÎAPOQΪÕý·½ÐΣ¬
¡àOQ=QA£¬¡ÏQOA=45¡ã£»
ÔÚRt¡÷OQAÖУ¬¸ù¾ÝOQ=2£¬¡ÏAOQ=45¡ã£¬
µÃQµã×ø±êΪ£¨
2
£¬-
2
£©£»
Èçͼ4£¬ÉèËıßÐÎAPQOΪƽÐÐËıßÐΣ»
¡ßOQ¡ÎPA£¬¡ÏAPO=90¡ã£¬
¡à¡ÏPOQ=90¡ã£¬
ÓÖ¡ßOP=OQ£¬
¡à¡ÏPQO=45¡ã£¬
¡ßPQ¡ÎOA£¬
¡àPQ¡ÍyÖ᣻
ÉèPQ¡ÍyÖáÓÚµãH£¬
ÔÚRt¡÷OHQÖУ¬¸ù¾ÝOQ=2£¬¡ÏHQO=45¡ã£¬
µÃQµã×ø±êΪ£¨-
2
£¬
2
£©£®
¡à·ûºÏÌõ¼þµÄµãQµÄ×ø±êΪ£¨
2
£¬-
2
£©»ò£¨-
2
£¬
2
£©£®
µãÆÀ£º±¾ÌâÀûÓÃÁËÇÐÏßµÄÐÔÖÊ£¬Æ½ÐÐËıßÐεÄÐÔÖÊ£¬µÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÇó½â£¬×ÛºÏÐÔÇ¿£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â·½³Ì×飺
£¨1£©
3x+y=8
2x-3y=-2
       
£¨2£©
x
4
+
y
3
=
4
3
5(x-9)=6(y-2)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÖйúµÄ¹°ÇÅʼ½¨ÓÚ¶«ººÖкóÆÚ£¬ÒÑÓÐһǧ°Ë°ÙÓàÄêµÄÀúÊ·£®ËüÊÇÓÉÉì±ÛľʯÁºÇÅ¡¢³Å¼ÜÇŵÈÖð²½·¢Õ¹¶ø³ÉµÄ£®ÔÚÐγɺͷ¢Õ¹¹ý³ÌµÄÍâÐζ¼ÊÇÇúµÄ£¬ËùÒÔ¹Åʱ³£³ÆÎªÇúÇÅ£®ÔÚÎÒÊйÄÂ¥ºÓÑØ°¶¡¢Ñï×Ó¹«Ô°µÈµØËæ´¦¿É¼û£¬ÓÐÈ糤ºçÎÔ²¨£¬ÔìÐÍÓÅÃÀ£®
£¨1£©Èçͼ»¡ABÊǹ°ÇŵÄÒ»²¿·Ö£¬ÇëÈ·¶¨»¡ABËùÔÚÔ²µÄÔ²ÐÄO£¨ÒªÇ󣺳߹æ×÷ͼ£¬±£Áô×÷ͼºÛ¼££¬²»Ð´×÷·¨ºÍÖ¤Ã÷£©£»
£¨2£©Èô¹°ÇÅÔÚË®ÃæMNÉϵĿç¶ÈABΪ8Ã×£¬¹°ÇÅ»¡ABÓëË®ÃæMNµÄ×î´ó¾àÀëΪ3Ã×£¬Çó¹°ÇÅËùÔÚÔ²µÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚµÈÑüÈý½ÇÐÎÖУ¬ÓÐÁ½Ìõ±ßµÄ³¤¶ÈÊÇ·½³Ìx2-9x+18=0µÄ¸ù£¬ÄÇôËüµÄÖܳ¤ÊÇ£¨¡¡¡¡£©
A¡¢12B¡¢15
C¡¢12»ò15D¡¢9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©£¨
1
2
£©-2-
8
+£¨
2
-1£©2-£¨
2
-2
£©£¨2+
2
£©            
£¨2£©½â·½³Ì£º2x2-1=-2x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Óá°£¾¡±£¬¡°£¼¡±£¬¡°=¡±Ìî¿Õ£º
£¨1£©0.7
 
0         
£¨2£©-6
 
4             
£¨3£©-
2
3
 
-
3
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶àÏîʽ-5a2b+ab-1ÊÇ
 
´Î
 
Ïîʽ£¬×î¸ß´ÎÏîÊÇ
 
£¬³£ÊýÏîÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ijÉÌÆ·µÄ½ø¼ÛΪÿ¼þ40Ôª£¬ÊÛ¼ÛΪÿ¼þ50Ôª£¬Ã¿¸öÔ¿ÉÂô³ö210¼þ£»Èç¹ûÿ¼þÉÌÆ·µÄÊÛ¼ÛÿÉÏÕÇ1Ôª£®Ôòÿ¸öÔÂÉÙÂô10¼þ£¨Ã¿¼þÊÛ¼Û²»ÄܸßÓÚ65Ôª£©£®Éèÿ¼þÉÌÆ·µÄÊÛ¼ÛÉÏÕÇxÔª£¨xΪÕýÕûÊý£©£¬Ã¿¸öÔµÄÏúÊÛÀûÈóΪyÔª£®
£¨1£©Ð´³öÉÏÕǺóÿ¼þÉÌÆ·µÄÀûÈóΪ
 
Ôª£¬Ã¿ÔÂÄÜÏúÊÛ
 
¼þÉÌÆ·£¨Óú¬xµÄ´úÊýʽ±íʾ£© 
£¨2£©Ã¿¼þÉÌÆ·µÄÊÛ¼Û¶¨Îª¶àÉÙԪʱ£¬Ã¿¸öÔ¿ɻñµÃ×î´óÀûÈó£¿×î´óµÄÔÂÀûÈóÊǶàÉÙÔª£¿
£¨3£©Ã¿¼þÉÌÆ·µÄÊÛ¼Û¶¨Îª¶àÉÙԪʱ£¬Ã¿¸öÔµÄÀûÈóǡΪ2200Ôª£¿¸ù¾ÝÒÔÉϽáÂÛ£¬ÇëÄãÖ±½Óд³öÊÛ¼ÛÔÚʲô·¶Î§Ê±£¬Ã¿¸öÔµÄÀûÈó²»µÍÓÚ2200Ôª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺
(-7)2
=
 
£»
£¨3
2
£©2=
 
£»
1
3
¡Á
27
=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸