【题目】如图在△ABC中,∠C=90°,AC=3cm,BC=4cm,点P是边BC上由B向C运动(不与点B、C重合)的一动点,P点的速度是1cm/s,设点P的运动时间为t,过P点作AC的平行线交AB与点N,连接AP,
(1)请用含有t的代数式表示线段AN和线段PN的长,
(2)当t为何值时,△APN的面积等于△ACP面积的三分之一?
(3)在点P的运动过程中,是否存在某一时刻的t的值,使得△APN的面积有最大值,若存在请求出t的值并计算最大面积;若不存在,请说明理由.
【答案】(1) PN=t,AN =5﹣t;(2)当t为s时,△APN的面积等于△ACP面积的三分之一;(3)t=2时,△PAN的面积最大,最大值为.
【解析】
(1)利用勾股定理求出AB,再利用平行线分线段成比例定理,求出PN、BN即可解决问题;
(2)由题意:PNPC=×PCAC,推出AC=3PN,由此构建方程即可解决问题;
(3)构建二次函数,利用二次函数的性质即可解决问题.
(1)在Rt△ABC中,∵∠C=90°,AC=3cm,BC=4cm,
∴AB==5(cm),
∵PN∥AC,PB=t,
∴==,
∴==,
∴BN=t,PN=t,
∴AN=AB﹣BN=5﹣t.
(2)由题意:PNPC=×PCAC,
∴AC=3PN,
∴3=3t,
∴t=,
∴当t为2s时,△APN的面积等于△ACP面积的三分之一.
(3)由题意:S△APN=PNPC=t(4﹣t)=﹣(t﹣2)2+,
∵﹣<0,
∴t=2时,△PAN的面积最大,最大值为.
科目:初中数学 来源: 题型:
【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′.
(2)四边形 ABCA′的面积为_____;
(3)在直线l上找一点P,使PA+PB的长最短,则这个最短长度为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,直线y=x+4分别交x轴、y轴于点A、C,直线BC与直线AC关于y轴对称,动点D从点A出发,沿AC以每秒2个单位长度的速度向终点C运动,当点D出发后,过点D作DE∥BC交折线A﹣O﹣C于点E,以DE为边作等边△DEF,设△DEF与△ACO重叠部分图形的面积为S,点D运动的时间为t秒.
(1)写出坐标:点A( ),点B( ),点C( );
(2)当点E在线段AO上时,求S与t之间的函数关系式;
(3)求出以点B、E、F为顶点的三角形是直角三角形时t的值;
(4)直接写出点F运动的路程长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)若DF=2,且AF=4,求BD和DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.
(1)求证:△ABE≌△CDB.
(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com