【题目】已知关于的一元二次方程与,下列判断不正确的是( )
A.若方程有两个实数根,则方程也有两个实数根;
B.如果是方程的一个根,那么是的一个根;
C.如果方程与有一个根相等,那么这个根是1;
D.如果方程与有一个根相等,那么这个根是1或-1.
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2-2(k-1)x+k2 =0有两个实数根x1.x2.
(1)求实 数k的取值范围;
(2)若(x1+1)(x2+1)=2,试求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数y=x2﹣mx+m+1(m为常数).若这个二次函数的图象与x轴只有一个公共点A,且A点在x轴的正半轴上.
(1)求m的值.
(2)四边形AOBC是正方形,且点B在y轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B,C两点,求平移后的图象对应的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(1,0)和点B (0,-3),与x轴交于另一点C。
(1)求抛物线的解析式。
(2)在抛物线上是否存在一点D,使△ACD的面积与△ABC的面积相等(点D不与点B重合)?若存在,求出点D的坐标;若不存在,请说明理由。
(3)若点P是抛物线上的动点,点Q是抛物线对称轴上的动点,那么是否存在这样的点P,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在边AB上,点F、E在边AC上,且DF∥BE,.
(1)求证:DE∥BC;
(2)如果,S△ADF=2,求S△ABC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点为坐标原点,抛物线经过点和.
(1)求该抛物线的解析式及顶点坐标;
(2)把该抛物线向 (填“上”或“下”)平移 个单位长度,得到的抛物线与轴只有一个公共点;
(3)平移该抛物线,使平移后的抛物线经过点,且与轴交于点,同时满足以,,为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面内的两条直线l1、l2,点A、B在直线l2上,过点A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C,请依据上述定义解决如下问题.
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= ;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形 ABCD 的边长为 8,E 是 BC 边的中点,点 P 在射线 AD 上, 过 P 作 PF⊥AE 于 F.
(1)请判断△PFA 与△ABE 是否相似,并说明理由;
(2)当点 P 在射线 AD 上运动时,设 PA=x,是否存在实数 x,使以 P,F,E 为顶 点的三角形也与△ABE 相似?若存在,请求出 x 的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com