精英家教网 > 初中数学 > 题目详情
2.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为(  )
A.5cmB.10cmC.20cmD.5πcm

分析 由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径.

解答 解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,
则由题意得R=30,由$\frac{1}{2}$Rl=300π得l=20π;  
由2πr=l得r=10cm;
故选B.

点评 本题考查的知识点是圆锥的表面积,其中根据已知制作一个无盖的圆锥形容器的扇形铁皮的相关几何量,计算出圆锥的底面半径和高,是解答本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=5CF,四边形DCFE是平行四边形,则图中阴影部分的面积为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.感知:如图1,在正方形ABCD中,对角线AC,BD交于点O,G在OA上,CF⊥BG交OB于E,垂足为F,则△BOG≌△COE.
探究:在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=$\frac{1}{2}$∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.求PE与BF的数量关系.并结合图2说明理由.
应用:把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=30°,求$\frac{BF}{PE}$=$\frac{\sqrt{3}}{6}$.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为(  )
A.231πB.210πC.190πD.171π

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,已知点A,C在反比例函数y=$\frac{a}{x}$(a>0)的图象上,点B,D在反比例函数y=$\frac{b}{x}$(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,在△ABC中,∠ABC=45°,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于F,则∠CAF的度数是(  )
A.30°B.45°C.75°D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.八年级(6)班有45名学生中,14岁的有16人,15岁的有25人,16岁的有4人,求这个班学生的平均年龄.(精确到0.1岁)

查看答案和解析>>

同步练习册答案