精英家教网 > 初中数学 > 题目详情

已知等边△ABC底边AB边上的高为5cm,则AC边上的角平分线为________.

5
分析:利用等边三角形的性质直接写出答案即可.
解答:∵△ABC是等边三角形,
∴△ABC各边上的高的长=各边上的中线=各角的平分线的长,
∴AC边上的角平分线为5,
故答案为:5
点评:本题考查了等边三角形的性质,解题的关键是弄清其三线合一的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图,已知等边△ABC和等边△DBC有公共的底边BC.

(1)以图1中的某个点为旋转中心,旋转△DBC,就能使△DBC与△ABC重合,则满足题意的点为
B点、C点、BC的中点
;(写出所有的这种点)
(2)如图2,已知B1是BC的中点,现沿着由点B到点B1的方向,将△DBC平移到△D1B1C1的位置.请你判断:得到的四边形ABD1C1是平行四边形吗?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h
,∴r1+r2=h(定值).
(1)类比与推理
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(2)理解与应用
△ABC中,∠C=90°,AB=10,AC=8,BC=6,△ABC内部是否存在一点O,点O到各边的距离相等?
 
(填“存在”或“不存在”),若存在,请直接写出这个距离r的值,r=
 
.若不存在,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ARP+S△ACP=S△ABC,即:
1
2
AB•r1+
1
2
AC•r2=
1
2
AC•h,∴r1+r2=h(定值).
(1)理解与应用:
如图,在边长为3的正方形ABCD中,点E为对角线BD上的一点,且BE=BC,F为CE上一点,FM⊥BC于M,FN⊥BD于N,试利用上述结论求出FM+FN的长.
(2)类比与推理:
如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在三角形内任一点”,即:
已知等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,等边△ABC的高为h,试证明r1+r2+r3=h(定值).
(3)拓展与延伸:
若正n边形A1A2…An,内部任意一点P到各边的距离为r1r2…rn,请问r1+r2+…+rn是否为定值?如果是,请合理猜测出这个定值.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

下列图中,已知等边△ABC和等边△DBC有公共的底边BC

(1)以图(1)中的某个点为旋转中心,旋转△DBC与△ABC重合,则旋转中心为
B点、C点、BC的中点
B点、C点、BC的中点
(写出所有满足条件的点)
(2)如图(2),已知B1是BC的中点,现沿着由B到B1的方向,将△DBC平移到△D1B1C1的位置,连接AC1,BD1得到的四边形ABD1C1是什么特殊四边形?说明你的理由.
(3)在四边形ABD1C1中有
3
3
对全等三角形,请你选出其中一对进行证明.

查看答案和解析>>

同步练习册答案