ÔĶÁ²ÄÁÏ£º
Èçͼ£¬¡÷ABCÖУ¬AB=AC£¬PΪµ×±ßBCÉÏÈÎÒâÒ»µã£¬µãPµ½Á½ÑüµÄ¾àÀë·Ö±ðΪr1£¬r2£¬ÑüÉϵĸßΪh£¬Á¬½ÓAP£¬ÔòS¡÷ABP+S¡÷ACP=S¡÷ABC£¬¼´£º
1
2
AB•r1+
1
2
AC•r2=
1
2
AB•h
£¬¡àr1+r2=h£¨¶¨Öµ£©£®
£¨1£©Àà±ÈÓëÍÆÀí
Èç¹û°Ñ¡°µÈÑüÈý½ÇÐΡ±¸Ä³É¡°µÈ±ßÈý½ÇÐΡ±£¬ÄÇôPµÄλÖÿÉÒÔÓÉ¡°ÔÚµ×±ßÉÏÈÎÒ»µã¡±·Å¿íΪ¡°ÔÚÈý½ÇÐÎÄÚÈÎÒ»µã¡±£¬¼´£ºÒÑÖªµÈ±ß¡÷ABCÄÚÈÎÒâÒ»µãPµ½¸÷±ßµÄ¾àÀë·Ö±ðΪr1£¬r2£¬r3£¬µÈ±ß¡÷ABCµÄ¸ßΪh£¬ÊÔÖ¤Ã÷r1+r2+r3=h£¨¶¨Öµ£©£®
£¨2£©Àí½âÓëÓ¦ÓÃ
¡÷ABCÖУ¬¡ÏC=90¡ã£¬AB=10£¬AC=8£¬BC=6£¬¡÷ABCÄÚ²¿ÊÇ·ñ´æÔÚÒ»µãO£¬µãOµ½¸÷±ßµÄ¾àÀëÏàµÈ£¿
 
£¨Ìî¡°´æÔÚ¡±»ò¡°²»´æÔÚ¡±£©£¬Èô´æÔÚ£¬ÇëÖ±½Óд³öÕâ¸ö¾àÀërµÄÖµ£¬r=
 
£®Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®¾«Ó¢¼Ò½ÌÍø
·ÖÎö£º£¨1£©Á¬½ÓAP£¬BP£¬CP£®¸ù¾ÝÈý½ÇÐÎABCµÄÃæ»ýµÄÁ½ÖÖ¼ÆËã·½·¨½øÐÐÖ¤Ã÷£»
£¨2£©¸ù¾Ý½Çƽ·ÖÏßÉϵĵ㵽½ÇÁ½±ßµÄ¾àÀëÏàµÈ½øÐÐÇó×÷£®
½â´ð£º¾«Ó¢¼Ò½ÌÍøÖ¤Ã÷£º£¨1£©Á¬½ÓAP£¬BP£¬CP£®£¨2·Ö£©
ÔòS¡÷ABP+S¡÷BCP+S¡÷ACP=S¡÷ABC£¬£¨4·Ö£©
¼´
1
2
AB•r3+
1
2
BC•r1+
1
2
AC•r2=
1
2
AB•h
£¬£¨6·Ö£©
¡ß¡÷ABCÊǵȱßÈý½ÇÐΣ¬
¡àAB=BC=AC£¬
¡àr1+r2+r3=h£¨¶¨Öµ£©£»£¨8·Ö£©

£¨2£©´æÔÚ£®£¨10·Ö£©
r=2£®£¨12·Ö£©
µãÆÀ£º´ËÌâÖ÷ÒªÊÇ¿¼²éÁ˵ȱßÈý½ÇÐεÄÐÔÖÊ¡¢½Çƽ·ÖÏßµÄÐÔÖÊÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½£®×¢Ò⣺ֱ½ÇÈý½ÇÐÎб±ßÉϵĸߵÈÓÚÁ½ÌõÖ±½Ç±ßµÄ³Ë»ý³ýÒÔб±ß£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

25¡¢ÔĶÁ²ÄÁÏ£º
Èçͼ£¨Ò»£©£¬ÔÚÒѽ¨Á¢Ö±½Ç×ø±êϵµÄ·½¸ñÖ½ÖУ¬Í¼Ð΢ٵĶ¥µãΪA¡¢B¡¢C£¬Òª½«Ëü±ä»»µ½Í¼¢Ü£¨±ä»»¹ý³ÌÖÐͼÐεĶ¥µã±ØÐëÔÚ¸ñµãÉÏ£¬ÇÒ²»Äܳ¬³ö·½¸ñÖ½µÄ±ß½ç£©£®
ÀýÈ磺½«Í¼Ð΢Ù×÷Èçϱ任£¨Èçͼ¶þ£©£®
µÚÒ»²½£ºÆ½ÒÆ£¬Ê¹µãC£¨6£¬6£©ÒÆÖÁµã£¨4£¬3£©£¬µÃͼ¢Ú£»
µÚ¶þ²½£ºÐýת£¬ÈÆ×ŵ㣨4£¬3£©Ðýת180¡ã£¬µÃͼ¢Û£»
µÚÈý²½£ºÆ½ÒÆ£¬Ê¹µã£¨4£¬3£©ÒÆÖÁµãO£¨0£¬0£©£¬µÃͼ¢Ü£®
ÔòͼÐ΢ٱ»±ä»»µ½ÁËͼ¢Ü£®

½â¾öÎÊÌ⣺
£¨1£©ÔÚÉÏÊö±ä»¯¹ý³ÌÖÐAµãµÄ×ø±êÒÀ´ÎΪ£º
£¨4£¬6£©¡ú£¨
2
£¬
3
£©¡ú£¨
6
£¬
3
£©¡ú£¨
2
£¬
0
£©
£¨2£©Èçͼ£¨Èý£©£¬·ÂÕÕÀýÌâ¸ñʽ£¬ÔÚÖ±½Ç×ø±êϵµÄ·½¸ñÖ½Öн«¡÷DEF¾­¹ýƽÒÆ¡¢Ðýת¡¢·­Õ۵ȱ任µÃµ½¡÷OPQ£®£¨Ð´³ö±ä»»²½Ö裬²¢»­³öÏàÓ¦µÄͼÐΣ©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

¾«Ó¢¼Ò½ÌÍøÔĶÁ²ÄÁÏ£º
Èçͼ1£¬¹ý¡÷ABCµÄÈý¸ö¶¥µã·Ö±ð×÷³öÓëˮƽÏß´¹Ö±µÄÈýÌõÖ±Ïߣ¬Íâ²àÁ½ÌõÖ±ÏßÖ®¼äµÄ¾àÀë½Ð¡÷ABCµÄ¡°Ë®Æ½¿í¡±£¨a£©£¬ÖмäµÄÕâÌõÖ±ÏßÔÚ¡÷ABCÄÚ²¿Ï߶εij¤¶È½Ð¡÷ABCµÄ¡°Ç¦´¹¸ß£¨h£©¡±£®ÎÒÃǿɵóöÒ»ÖÖ¼ÆËãÈý½ÇÐÎÃæ»ýµÄз½·¨£ºS¡÷ABC=
12
ah
£¬¼´Èý½ÇÐÎÃæ»ýµÈÓÚˮƽ¿íÓëǦ´¹¸ß³Ë»ýµÄÒ»°ë£®
½â´ðÏÂÁÐÎÊÌ⣺¾«Ó¢¼Ò½ÌÍø
Èçͼ2£¬Å×ÎïÏ߶¥µã×ø±êΪµãC£¨-1£¬-4£©£¬½»xÖáÓÚµãA£¨-3£¬0£©£¬½»yÖáÓÚµãB£®
£¨1£©ÇóÅ×ÎïÏߺÍÖ±ÏßABµÄ½âÎöʽ£»
£¨2£©µãPÊÇÅ×ÎïÏߣ¨ÔÚµÚÈýÏóÏÞÄÚ£©ÉϵÄÒ»¸ö¶¯µã£¬Á¬½ÓPA£¬PB£¬µ±PµãÔ˶¯µ½¶¥µãCʱ£¬Çó¡÷CABµÄǦ´¹¸ßCD¼°S¡÷CAB£»
£¨3£©ÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹S¡÷PAB=S¡÷CAB£¬Èô´æÔÚ£¬Çó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨2013•ÒæÑô£©ÔĶÁ²ÄÁÏ£ºÈçͼ1£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬A¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ABÖеãPµÄ×ø±êΪ£¨xp£¬yp£©£®ÓÉxp-x1=x2-xp£¬µÃxp=
x1+x2
2
£¬Í¬Àíyp=
y1+y2
2
£¬ËùÒÔABµÄÖеã×ø±êΪ(
x1+x2
2
£¬
y1+y2
2
)
£®Óɹ´¹É¶¨ÀíµÃAB2=
.
x2-x1
  
.
2
+
.
y2-y1
  
.
2
£¬ËùÒÔA¡¢BÁ½µã¼äµÄ¾àÀ빫ʽΪAB=
(x2-x1)2+(y2-y1)2
£®
×¢£ºÉÏÊö¹«Ê½¶ÔA¡¢BÔÚƽÃæÖ±½Ç×ø±êϵÖÐÆäËüλÖÃÒ²³ÉÁ¢£®
½â´ðÏÂÁÐÎÊÌ⣺
Èçͼ2£¬Ö±Ïßl£ºy=2x+2ÓëÅ×ÎïÏßy=2x2½»ÓÚA¡¢BÁ½µã£¬PΪABµÄÖе㣬¹ýP×÷xÖáµÄ´¹Ïß½»Å×ÎïÏßÓÚµãC£®
£¨1£©ÇóA¡¢BÁ½µãµÄ×ø±ê¼°CµãµÄ×ø±ê£»
£¨2£©Á¬½áAB¡¢AC£¬ÇóÖ¤¡÷ABCΪֱ½ÇÈý½ÇÐΣ»
£¨3£©½«Ö±ÏßlƽÒƵ½CµãʱµÃµ½Ö±Ïßl¡ä£¬ÇóÁ½Ö±ÏßlÓël¡äµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁ²ÄÁÏ£ºÈçͼ£¬AB=AC£¬BD=CD£¬Ôò¿ÉÖ¤µÃADƽ·Ö¡ÏBAC£¬¾Ý´ËÎÒÃÇÒý³öÁË¡°½Çƽ·ÖÏß¡±µÄ³ß¹æ×÷·¨£®

ÎÊÌ⣺Èçͼ£¬AD=AE£¬AB=AC£¬Ò²¿ÉÖ¤µÃAPƽ·Ö¡ÏBAC£¬¾Ý´ËÎÒÃÇÄÜ·ñÒý³öÁË¡°½Çƽ·ÖÏß¡±µÄµÚ¶þÖֳ߹æ×÷·¨ÄØ£¿ÇëÔÚͼÖг¢ÊÔ×Å»­³ö¡Ï¦ÁµÄƽ·ÖÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁ²ÄÁÏ£º

Èçͼ1£¬AB¡¢CD½»ÓÚµãO£¬ÎÒÃÇ°Ñ¡÷AODºÍ¡÷BOC½Ð×ö¶Ô¶¥Èý½ÇÐΣ®
½áÂÛ£ºÈô¡÷AODºÍ¡÷BOCÊǶԶ¥Èý½ÇÐΣ¬Ôò¡ÏA+¡ÏD=¡ÏB+¡ÏC£®
½áÂÛÓ¦ÓþÙÀý£º
Èçͼ2£ºÇóÎå½ÇÐǵÄÎå¸öÄÚ½ÇÖ®ºÍ£¬¼´¡ÏA+¡ÏB+¡ÏACE+¡ÏADB+¡ÏEµÄ¶ÈÊý£®
½â£ºÁ¬½ÓCD£¬ÓɶԶ¥Èý½ÇÐεÄÐÔÖʵ㺡ÏB+¡ÏE=¡Ï1+¡Ï2£¬
ÔÚ¡÷ACDÖУ¬¡ß¡ÏA+¡ÏACD+¡ÏADC=180¡ã£¬
¼´¡ÏA+¡Ï3+¡Ï1+¡Ï2+¡Ï4=180¡ã£¬
¡à¡ÏA+¡ÏACE+¡ÏB+¡ÏE+ADB=180¡ã
¼´Îå½ÇÐǵÄÎå¸öÄÚ½ÇÖ®ºÍΪ180¡ã£®
½â¾öÎÊÌ⣺
£¨1£©Èçͼ¢Ù£¬¡ÏA+¡ÏB+¡ÏC+¡ÏD+¡ÏE+¡ÏF=
360¡ã
360¡ã
£»
£¨2£©Èçͼ¢Ú£¬¡ÏA+¡ÏB+¡ÏC+¡ÏD+¡ÏE+¡ÏF+¡ÏG=
540¡ã
540¡ã
£»
£¨3£©Èçͼ¢Û£¬¡ÏA+¡ÏB+¡ÏC+¡ÏD+¡ÏE+¡ÏF+¡ÏG+¡ÏH=
720¡ã
720¡ã
£»
£¨4£©Èçͼ¢Ü£¬¡ÏA+¡ÏB+¡ÏC+¡ÏD+¡ÏE+¡ÏF+¡ÏG+¡ÏH+¡ÏM+¡ÏN=
1080¡ã
1080¡ã
£»
ÇëÄã´Óͼ¢Û»òͼ¢ÜÖÐÈÎÑ¡Ò»¸ö£¬Ð´³öÄãµÄ¼ÆËã¹ý³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸