精英家教网 > 初中数学 > 题目详情

已知点(1,a)在反比例函数y=数学公式(k≠0)的图象上,其中a=m2+2m+5(m为实数),则这个函数的图象在第(    )象限.


  1. A.
  2. B.
  3. C.
    一、三
  4. D.
    二、四
C
分析:把点(1,a)代入反比例函数解析式,整理可得k的值,判断k的符号可得函数图象所在象限.
解答:∵点(1,a)在反比例函数y=(k≠0)的图象上,
∴k=1×a=a=m2+2m+5=(m+1)2+4,
∴k>0,
∴这个函数的图象在第一、三象限.
故选C.
点评:考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数大于0,图象的两个分支在一、三象限;关键是得到反比例函数的比例系数的符号.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连接EC,取EC的中点M,连接DM和BM.
(1)若点D在边AC上,点E在边AB上且与点B不重合,如图1,探索BM、DM的关系并给予证明;
(2)如果将图1中的△ADE绕点A逆时针旋转小于45°的角,如图2,那么(1)中的结论是否仍成立?如果不精英家教网成立,请举出反例;如果成立,请给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC,
(1)若点O在BC上,求证:AB=AC;
(2)若点O在△ABC的外部,则上述结论还成立吗?若成立请画出图形并完成证明过程,若不成立,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,平面直角坐标系上有A(a,0)、B(0,-b)、C(b,0)三点,且a≥b>0,抛物线y=(x-2)(x-m)-(n-2)(n-m). (m,n为常数,且m+2≥2n>0),经过点A和点C,顶点为P
(1)当m,n满足什么关系时,S△AOB最大;
(3)如图,当△ACP为直角三角形时,判断以下命题是否正确:“直角三角形DEF的三个顶点都在这条抛物线上,且DF∥x轴,那么△ACP与△DEF斜边上的高相等”,如果正确请予以证明,不正确请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知等腰△ABC中,AB=AC,D是BC的中点,将三角板中的90°角的顶点绕D点在△ABC内旋转,角的两边分别与AB、AC交于E、F,且点E、F不与A、B、C三点重合.
(1)如果∠A=90°,求证:DE=DF;
(2)如果DF∥AB,则结论:“四边形AEDF为直角梯形”是否正确?若正确,请证明;若不正确,请画出草图举反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+
1
6
x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1).已知AM=BC.
(1)求二次函数的解析式;
(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;
(3)在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N.
①若直线l⊥BD,如图1,试求
1
BP
+
1
BQ
的值;
②若l为满足条件的任意直线.如图2.①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例.

查看答案和解析>>

同步练习册答案