分析 (1)首先证明OE是△ABC的中位线,推出OE∥BC,由EF∥OB,推荐可提出四边形OBFE是平行四边形.
(2)当AD⊥BD时,四边形OBFE是矩形. 只要证明∠EOB=90°即可解决问题.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴点O是AC的中点.
又∵点E是边AB的中点,![]()
∴OE是△ABC的中位线,
∴OE∥BC,
又∵点F在CB的延长线上,
∴OE∥BF.
∵EF∥BD,即EF∥OB,
∴四边形OBFE是平行四边形.
(2)当AD⊥BD时,四边形OBFE是矩形.
理由:由(1)可知四边形OBFE是平行四边形,
又∵AD⊥BD,AD∥BC,且点F在BC的延长线上,
∴FC⊥BD,
∴∠OBF=90°,
∴四边形OBFE是矩形.
点评 本题考查平行四边形的性质和判定、矩形的判定、三角形的中位线定理等知识,解题的关键是熟练掌握平行四边形的性质和判定,掌握矩形的判定方法,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com