精英家教网 > 初中数学 > 题目详情
2.计算:$\sqrt{18}$+($\frac{1}{2}$)-3+20170-$\sqrt{\frac{1}{2}}$.

分析 原式利用零指数幂、负整数指数幂法则,以及二次根式性质计算即可得到结果.

解答 解:原式=3$\sqrt{2}$+8+1-$\frac{\sqrt{2}}{2}$=$\frac{5\sqrt{2}}{2}$+9.

点评 此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图所示,△ADC是直角三角形,∠ADC=90°,AC=BC,且AC⊥BC于点C,BF⊥CD于F,连接AB交CD于E,试说明:AD+DF=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算
(1)-2×4-6+(-$\frac{1}{5}$)-2-3$\frac{4}{5}$
(2)(-10)3+[(-4)2+(1-32)×2]-(-0.28)÷0.04.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知点A(x1,y1)和点B(x2,y2) 是双曲线y=$-\frac{2}{x}$图象上关于原点成中心对称的两点,则3x1y2-8x2y1=-10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,将直角三角形ABC沿直线BC向右平移后,到达三角形DEF位置,如果AB=8cm,BE=4cm,DH=3cm,求图中阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,△ABC中,AD平分∠BAC,BP⊥AD于点P,AB=5,BP=1,AC=9,说明∠ABP=2∠ACB的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,四边形ABCD是矩形,BC=1,则点M表示的数是(  )
A.2B.$\sqrt{5}-1$C.$\sqrt{5}$D.$\sqrt{10}-1$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在?ABCD中,对角线AC,BD交于点O,E为AB中点,点F在CB的延长线上,且EF∥BD.
(1)求证;四边形OBFE是平行四边形;
(2)当线段AD和BD之间满足什么条件时,四边形OBFE是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,直线y=-x-4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B两点的横坐标分别为-1和-4,且抛物线过原点.
(1)求抛物线的解析式;
(2)在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF=3S△EFP,求$\frac{EF}{GF}$的值.

查看答案和解析>>

同步练习册答案