7£®Æ½ÃæÖ±½Ç×ø±êϵÖУ¬µãP£¨x£¬y£©µÄºá×ø±êxµÄ¾ø¶ÔÖµ±íʾΪ|x|£¬×Ý×ø±êyµÄ¾ø¶ÔÖµ±íʾΪ|y|£¬ÎÒÃǰѵãP£¨x£¬y£©µÄºá×ø±êÓë×Ý×ø±êµÄ¾ø¶ÔÖµÖ®ºÍ½Ð×öµãP£¨x£¬y£©µÄ¹´¹ÉÖµ£¬¼ÇΪ¡¸P¡¹£¬¼´¡¸P¡¹=|x|+|y|£®£¨ÆäÖеġ°+¡±ÊÇËÄÔòÔËËãÖеļӷ¨£©ÀýÈ磺Èç¹ûA£¨-1£¬3£©£¬ÄÇô¡¸A¡¹=|-1|+|3|=4£®
£¨1£©µãMÔÚ·´±ÈÀýº¯Êýy=$\frac{3}{x}$µÄͼÏóÉÏ£¬ÇÒ¡¸M¡¹=4£¬ÇóµãMµÄ×ø±ê£»
£¨2£©ÇóÂú×ãÌõ¼þ¡¸N¡¹=3µÄËùÓеãNΧ³ÉµÄͼÐεÄÃæ»ý£®

·ÖÎö £¨1£©ÉèµãMµÄ×ø±êΪ£¨m£¬$\frac{3}{m}$£©£¬¸ù¾Ý¹´¹ÉÖµµÄ¶¨Òåʽ¿ÉµÃ³ö¹ØÓÚmµÄÒ»Ôª¶þ´Î·½³Ì£¬½â·½³Ì¼´¿ÉµÃ³ömµÄÖµ£¬½«mµÄÖµ´úÈëµ½µãMµÄ×ø±êÖм´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÉèµãNµÄ×ø±êΪ£¨x£¬y£©£¬¸ù¾Ý¹´¹ÉÖµµÄ¶¨Òåʽ¿É·Ö¶ÎÕÒ³öy¹ØÓÚxµÄº¯Êý½âÎöʽ£¬»­³öͼÏó¸ù¾ÝÁâÐεÄÃæ»ý¹«Ê½¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÉèµãMµÄ×ø±êΪ£¨m£¬$\frac{3}{m}$£©£¬
¡ß¡¸M¡¹=4=|m|+|$\frac{3}{m}$|£¬
¡àm2-4m+3=0£¬»òm2+4m+3=0£¬
½âµÃ£ºm1=1£¬m2=3£¬m3=-1£¬m4=-3£®
¡àµãMµÄ×ø±êΪ£¨-3£¬-1£©£¬£¨-1£¬-3£©£¬£¨1£¬3£©ºÍ£¨3£¬1£©£®
£¨2£©ÉèµãNµÄ×ø±êΪ£¨x£¬y£©£¬
¡ß¡¸N¡¹=3=|x|+|y|£¬
¡à·ÖÈýÖÖÇé¿ö¿¼ÂÇ£®
¢Ùxy£¾0ʱ£¬x+y=3£¨x¡¢y¾ùΪÕý£©£¬»òx+y=-3£¨x¡¢y¾ùΪ¸º£©£»
¢Úxy£¼0ʱ£¬x-y=3£¨x£¾0£¬y£¼0£©£¬»ò-x+y=3£¨x£¼0£¬y£¾0£©£»
¢Ûxy=0ʱ£¬x=0£¬y=¡À3£¬»òy=0£¬x=¡À3£®
»­³öͼÏóÈçͼËùʾ£®

µãA£¨0£¬3£©£¬B£¨3£¬0£©£¬C£¨0£¬-3£©£¬D£¨-3£¬0£©£®
Χ³ÇͼÐεÄÃæ»ýS=BD•AC=[3-£¨-3£©]¡Á[3-£¨-3£©]=6¡Á6=36£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£¬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÕÒ³ö¹ØÓÚmµÄÒ»Ôª¶þ´Î·½³Ì£»£¨2£©·Ö¶ÎÕÒ³öy¹ØÓÚxµÄº¯Êý¹ØÏµÊ½£®±¾ÌâÊôÓÚ»ù´¡Ì⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬ÕýÈ·Àí½â¹´¹ÉÖµµÄ¶¨ÒåÒÔ¼°Äܹ»ÕýÈ·ÔËÓù´¹ÉÖµµÄ¶¨ÒåʽÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô·Öʽ$\frac{{x}^{2}-1}{2x+2}$µÄֵΪ0£¬Ôò£¨¡¡¡¡£©
A£®x=-1B£®x=1C£®x=-$\frac{1}{2}$D£®x=¡À1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬Ôڱ߳¤Îª6µÄÕý·½ÐÎABCDÖУ¬EÊDZßCDµÄÖе㣬½«¡÷ADEÑØAE¶ÔÕÛÖÁ¡÷AFE£¬ÑÓ³¤½»BCÓÚµãG£¬Á¬½ÓAG£®Ôòsin¡ÏBAG=$\frac{\sqrt{10}}{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®½â·½³Ì£º
£¨1£©$\frac{3x-1}{2}$=$\frac{4x+2}{5}$-1  
£¨2£©$\frac{5x-4}{3}$-$\frac{x-1}{4}$=1-$\frac{x+1}{12}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÇóÏÂÁи÷ʽÖеÄx
£¨1£©16£¨x-2£©2=81
£¨2£©27£¨x+1£©3+125=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Éèx2+mx+100ÊÇÒ»¸öÍêȫƽ·½Ê½£¬Ôòm=¡À20£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®£¨1£©Èô5a+1ºÍa-19ÊÇÊýmµÄÁ½¸ö²»Í¬µÄƽ·½¸ù£¬ÇómµÄÖµ£®
£¨2£©Èç¹ûy=$\frac{\sqrt{{x}^{2}-4}+\sqrt{4-{x}^{2}}}{x+2}$+3£¬ÊÔÇó2x+yµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬¾ØÐÎABCDÖУ¬ACÓëBD½»ÓÚµãO£¬BE¡ÍAC£¬CF¡ÍBD£¬´¹×ã·Ö±ðΪE£¬F£®ÇóÖ¤£º
£¨1£©BE=CF£»
£¨2£©¡÷CDF¡×¡÷BDC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®½âÏÂÁз½³Ì
£¨1£©-4x+1=-2£¨$\frac{1}{2}$-x£©
£¨2£©2-$\frac{3x-7}{4}=-\frac{x+7}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸