精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中两条直线为l1:y=–3x+3,l2:y=–3x+9,直线l1x轴于点A,交y轴于点B,直线l2x轴于点D,过点Bx轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+cE、B、C三点,下列判断中:

①a–b+c=0;

②2a+b+c=5;

③抛物线关于直线x=1对称;

④抛物线过点(b,c);

⑤S四边形ABCD=5;

其中正确的个数有( )

A. 5 B. 4 C. 3 D. 2

【答案】C

【解析】解:直线l1y=﹣3x+3x轴于点A,交y轴于点B,∴A(1,0),B(0,3),∵AE关于y轴对称,E(﹣1,0).

直线l2y=﹣3x+9x轴于点D,过点Bx轴的平行线交l2于点C,∴D(3,0),C点纵坐标与B点纵坐标相同都是3,把y=3代入y=﹣3x+9,得3=﹣3x+9,解得x=2,∴C(2,3).

抛物线EBC三点,,解得:,∴y=﹣x2+2x+3.

①∵抛物线E(﹣1,0),∴ab+c=0,故正确;

②∵a=﹣1,b=2,c=3,∴2a+b+c=﹣2+2+3=3≠5,故错误;

③∵抛物线过B(0,3),C(2,3)两点,对称轴是直线x=1,∴抛物线关于直线x=1对称,故正确;

④∵b=2,c=3,抛物线过C(2,3)点,抛物线过点(bc),故正确;

⑤∵直线l1l2,即ABCD,又BCAD,∴四边形ABCD是平行四边形,S四边形ABCD=BCOB=2×3=6≠5,故错误.

综上可知,正确的结论有3个.

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购. 经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.

(1)求甲、乙两种型号设备的价格;

(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;

(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度米,顶点距水面米(即米),小孔顶点距水面米(即米).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,则此时大孔的水面宽度长为(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),点P是等腰三角形ABC底边BC上的一动点,过点PBC的垂线,交直线AB于点Q,交CA的延长线于点R

(1)试猜想线段ARAQ的长度之间存在怎样的数量关系?并证明你的猜想.

(2)如图(2),如果点P沿着底边BC所在的直线,按由CB的方向运动到CB的延长线上时,其它条件不变,问(1)中所得的结论还成立吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y1=x﹣m+1y2= (n≠0)的图象交于P,Q两点.

(1)若y1的图象过(n,0),且m+n=3,求y2的函数表达式:

(2)若P,Q关于原点成中心对称.

m的值;

x>2时,对于满足条件0<n<n0的一切n总有y1>y2,求n0的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购. 经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.

(1)求甲、乙两种型号设备的价格;

(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;

(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,张老师举了下面的例题:

例1 等腰三角形ABC中,∠A=110°,求∠B的度数.

例2 等腰三角形ABC中,∠A=40°,求∠B的度数.

张老师启发同学们进行变式,小敏编了如下一题:

变式 等腰三角形ABC中,∠A=80°,求∠B的度数.

(1)请你解答以上的变式题.

(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,已知ABCD不平行,ABDACD,请你添加一个条件:______ .使得加上这个条件后能够推出ABCD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)某数学兴趣小组想测量商丘电视台电视塔的高度,如图,该小组在商丘电视塔BC前一座楼房楼顶A处所观测到电视塔最高点B的仰角为65°,电视塔最低点C的仰角为30°,楼顶A与电视塔的水平距离AD90米,求商丘电视塔BC的高度.(结果精确到1米,参考数据≈1.41,≈1.73,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)

查看答案和解析>>

同步练习册答案