【题目】已知数轴上三点M,O,N对应的数分别为-1,0,3,点P为数轴上任意一点,其对应的数为x.
(1)MN的长为 ;
(2)如果点P到点M、点N的距离相等,那么x的值是 ;
(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.
(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.
【答案】(1)4;(2)1;(3)-3或5;(4)t的值为或4.
【解析】试题分析:(1)根据数轴上两点之间的距离求法即可得;
(2)根据三点M,N对应的数,得出NM的中点为:x=(-1+3)÷2求出即可;
(3)根据P点在N点右侧或在M点左侧分别求出即可;
(4)设经过t秒点P到点M、点N的距离相等,则点P对应的数是-t,点M对应的数是-1 - 2t,点N对应的数是3 - 3t.,根据PM=PN建立方程,求解即可.
试题解析:(1)MN的长为:|3-(-1)|=4,
故答案为:4;
(2)x=(-1+3)÷2=1,
故答案为:1;
(3)当点P在M点左侧时,则有(3-x)+(-1-x)=8,解得:x=-3,
当点P在N点右侧是时,则有(x-3)+[x-(-1)]=8,解得:x=5,
综上,x的值是-3或5;
(4)设运动t分钟时,点P到点M,点N的距离相等,即PM = PN,
点P对应的数是-t,点M对应的数是-1 - 2t,点N对应的数是3 - 3t,
①当点M和点N在点P同侧时,点M和点N重合,所以-1 - 2t = 3 - 3t,解得t = 4,符合题意;
②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM = -t -(-1 - 2t)= t + 1,PN=(3 - 3t)-(-t)= 3 - 2t,
所以t + 1 = 3 - 2t,解得t =,符合题意,
综上所述,t的值为或4.
科目:初中数学 来源: 题型:
【题目】据了解,个体服装销售要高出进价的20%方可盈利,一销售老板以高出进价的60%标价,如果一件服装标价240元,那么:
(1)进价是多少元?(2)最低售价多少元时,销售老板方可盈利?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把二次函数y=﹣(x+1)2﹣3的图象沿着x轴翻折后,得到的二次函数有( )
A.最大值y=3B.最大值y=﹣3C.最小值y=3D.最小值y=﹣3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据题意解答
(1)已知x= +1,y= ﹣1,求下列各式的值. ①x2+2xy+y2
②x2﹣y2
(2)先化简,再求值: ÷( ﹣a),其中a= ﹣2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,Rt△ABC中,∠ACB=Rt∠,AC=8,BC=6,点D为AB的中点,动点P从点A出发,沿AC方向以每秒1个单位的速度向终点C运动,同时动点Q从点C出发,以每秒2个单位的速度先沿CB方向运动到点B,再沿BA方向向终点A运动,以DP,DQ为邻边构造PEQD,设点P运动的时间为t秒.
(1)当t=2时,求PD的长;
(2)如图2,当点Q运动至点B时,连结DE,求证:DE∥AP.
(3)如图3,连结CD.
①当点E恰好落在△ACD的边上时,求所有满足要求的t值;
②记运动过程中PEQD的面积为S,PEQD与△ACD的重叠部分面积为S1,当<时,请直接写出t的取值范围是 ______ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com