精英家教网 > 初中数学 > 题目详情
丁丁推铅球的出手高度为,在如图所示的直角坐标系中,求铅球的落点与丁丁的距离.
解:由题意知,点在抛物线上,
    所以.解这个方程,得(舍去).
    所以,该抛物线的解析式为.········· 3分
    当时,有,解得(舍去). 5分
    所以,铅球的落点与丁丁的距离为.    6分
运用二次函数解决的实际问题
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且AB=2.

(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒 ;设,当t 为何值时,s有最小值,并求出最小值。
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间(月份)与市场售价(元/千克)的关系如下表:
上市时间(月份)
1
2
3
4
5
6
市场售价(元/千克)
10.5
9
7.5
6
4.5
3
这种蔬菜每千克的种植成本(元/千克)与上市时间(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).
(1)写出上表中表示的市场售价(元/千克)关于上市时间(月份)的函数关系式;
(2)若图中抛物线过点,写出抛物线对应的函数关系式;
(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线轴于两点,交轴于点,已知抛物线的对称轴为,
(1)求二次函数的解析式;
在抛物线对称轴上是否存在一点,使点两点距离之差最大?若存在,求出点坐标;若不存在,请说明理由;
平行于轴的一条直线交抛物线于两点,若以为直径的圆恰好与轴相切,求此圆的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线 经过(-1,0),(0,-3),(2,-3)三点.
⑴求这条抛物线的解析式;
⑵写出抛物线的开口方向、对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一次函数的图象与轴,轴分别交于点.一个二次函数的图象经过点

(1)求点的坐标,并画出一次函数的图象;
(2)求二次函数的解析式及它的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图14,矩形ABCD中,AB = 6cm,AD = 3cm,点E在边DC上,且DE = 4cm.动点P从点A开始沿着A→B→C→E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t (s),P、Q两点运动路线与线段PQ围成的图形面积为S (cm2),求S与t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线向下平移3个单位,再向左平移4个单位得到抛物线,则原抛物线的顶点坐标是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知函数y=ax2+bx+c的图象如图所示,则下列判断不正确的是(  )
A.关于x的方程ax2+bx+c=0的根是x1=-1,x2=5
B.a-b+c>0
C.b=-4a
D.ac<0

查看答案和解析>>

同步练习册答案