精英家教网 > 初中数学 > 题目详情
如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系是           
(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
②若BC=DE=4,当AE取最大值时,求AF的值.
(1)BG=AE,理由见解析;(2)①成立,理由见解析;②.

试题分析:(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论.
(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
试题解析:(1)BG=AE.理由如下:
如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴AD⊥BC,BD="CD." ∴∠ADB=∠ADC=90°.
∵四边形DEFG是正方形,∴DE=DG.
在△ADE和△BDG中,∵DC=DB,∠ADC=∠ADB,DE=DG,∴△ADE≌△BDG(SAS).∴BG=AE.
(2)①成立.理由如下:
如图2,连接AD,
∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC. ∴∠ADG+∠GDB=90°.        
∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°.∴∠ADG+∠ADE=90°.∴∠BDG=∠ADE.
在△BDG和△ADE中,∵BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS).∴DG=AE.

②∵BG=AE,
∴当BG取得最大值时,AE取得最大值.
如图3,当旋转角为270°时,BG=AE.
∵BC=DE=4,∴BG=2+4=6.∴AE=6.
在Rt△AEF中,由勾股定理,得.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.
(1)证明:FD=AB;
(2)当平行四边形ABCD的面积为8时,求△FED的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明从点O出发,沿直线前进10米,向左转n°(0<n<180),再沿直线前进10米,又向左转n°……照这样走下去,小明恰能回到O点,且所走过的路程最短,则n的值等于   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,M、N是平行四边形ABCD对角线BD上两点。
(1)若BM=MN=DN,求证:四边形AMCN为平行四边形;
(2)若M、N为对角线BD上的动点(均可与端点重合),设BD=12cm,点M由点B向点D匀速运动,速度为2(cm/s),同时点N由点D向点B匀速运动,速度为 a(cm/s),运动时间为t(s)。若要使四边形AMCN为平行四边形,求a的值及t的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:?ABCD中,E、F为对角线BD上两点且BF=DE.求证:△ABE≌△CDF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中正确的是(  )
A.有一组邻边相等的四边形是菱形
B.有一个角是直角的平行四边形是矩形
C.对角线垂直的平行四边形是正方形
D.一组对边平行的四边形是平行四边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(  )

A.矩形       B.菱形         C.正方形      D.梯形

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为       (     )
A.平行四边形B.菱形C.对角线相等的四边形D.对角线垂直的四边形

查看答案和解析>>

同步练习册答案