精英家教网 > 初中数学 > 题目详情
3.如图,在平面直角坐标系中,一次函数y=-$\frac{1}{2}x+3$的图象分别交x轴,y轴交于A,B两点,与一次函数y=x的图象交于第一象限内的点C.
(1)求A,B两点的坐标;
(2)求△AOC的面积.

分析 (1)根据坐标轴上点的坐标特征求A点和B点坐标;
(2)利用两直线相交的问题,通过解方程组$\left\{\begin{array}{l}{y=x}\\{y=-\frac{1}{2}x+3}\end{array}\right.$可得C点坐标,然后根据三角形面积公式求解.

解答 解:(1)当y=0时,-$\frac{1}{2}x+3$=0,解得x=6,则A点坐标为(6,0);
当y=0时,y=-$\frac{1}{2}x+3$=3,则B点坐标为(0,3);
(2)解方程组$\left\{\begin{array}{l}{y=x}\\{y=-\frac{1}{2}x+3}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,则C(2,2),
所以△AOC的面积=$\frac{1}{2}$×2×6=6.

点评 本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图,直线EF分别交AB、CD于点M、N,MG平分∠EMB,NH平分∠END,并且MG∥NH,请说明∠1+∠2=180°的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图是正方形ABCD,如果我们只利用折叠的方法,能否在这个正方形中得到一个等边三角形?能(“能”或“不能”),如果你认为能,请简述你的折叠方法,如果你认为不能,说明理由.不必作答.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.反比例函数y=$\frac{k}{x}$(k≠0)的图象经过点(-1,-2),且自变量x>1时,函数值y的取值范围是(  )
A.0<y<2B.y>2C.y<1D.y>1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.计算:(-$\sqrt{2}$)0+|-2|=3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若点A(2,m)在抛物线y=x2上,则m的值为(  )
A.2B.±2C.4D.±4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.若m=$\root{3}{50}$-1,则估计m的值所在的范围(  )
A.1<m<2B.2<m<3C.3<m<4D.4<m<5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列运算正确的是(  )
A.a-2a=aB.(-a23=-a6C.a6÷a2=a3D.(x+y)2=x2+y2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.抛物线y=x2+mx-2m通过一个定点,则这个定点的坐标是(2,4).

查看答案和解析>>

同步练习册答案