
解:(1)由题意抛物线的对称轴为x=-

=2;顶点坐标为(2,m-4).
(2)根据AB=6,抛物线的对称轴为x=2可得A、B两点的坐标分别为:A(5,0);B(-1,0).
由于抛物线过A点,则有:0=25-20+m,m=-5.
因此抛物线的解析式为y=x
2-4x-5.
(3)根据抛物线的解析式可知:C点的坐标为(0,-5).
因此OC=OA=5,如果△AOP≌△COP,那么∠AOP=∠COP,P在二四象限的角平分线上即y=-x上,
由题意可知:

解得:

,

因此存在这样的P点,且P点的坐标为(

,-

)或(

,

).
分析:(1)抛物线的对称轴为x=-

,顶点坐标为(-

,

)据此可求出对称轴和抛物线的顶点坐标.
(2)当AB=6,以及(1)得出的抛物线的对称轴即可确定出A、B的坐标,然后将A或B的坐标代入抛物线的解析式中即可求出抛物线的解析式.
(3)根据(2)的抛物线不难得出A点坐标为(5,0),C点坐标为(0,-5).因此要想使△AOP≌△COP,两三角形中已有了OA=OC、OP=OP,因此这两组对应边的夹角必相等,即∠AOP=∠COP,那么P点就是直线y=-x与抛物线的交点.联立两个函数式即可求出P点的坐标.
点评:本题主要考查了一次函数及二次函数解析式的确定、全等三角形的判定、函数图象交点等知识及综合应用知识、解决问题的能力.